< (왼쪽부터) 신소재공학과 강정구 교수, 박민규 박사과정 >
우리 대학 신소재공학과 강정구 교수 연구팀이 물에서 작동하는 우수한 성능의 급속충전이 가능한 하이브리드 전지를 개발했다고 25일 밝혔다.
연구팀은 현재 전극 물질로 가장 많이 사용되고 있는 금속 산화물보다 전도성이 좋은 *다가의 금속 황화물을 양쪽의 전극 물질로 활용했다. 그리고 표면적이 높은 메조 다공성의 전극 구조를 기반으로 높은 에너지 밀도와 고출력을 갖는 하이브리드 수계 이온 에너지 저장 소재를 구현했다.
☞*전자를 잃고 (+)전기를 띄고 있는 상태를 말한다. 예를 들어 2+ 는 2가 이온으로 전자를 2개, 3+ 는 3가 이온으로 전자를 3개 잃어버린 상태다.
이 기술은 현재 주로 사용되는 리튬 이온 배터리 및 다른 수계 배터리보다 안전성 및 경제성 등에서 우수성을 가져 급속충전이 필요한 휴대용 전자기기 및 안전이 중요시되는 상황에서 배터리 사용 등에 적용할 수 있을 것으로 기대된다.
강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 `어드밴스드 에너지 머터리얼즈(Advanced Energy Materials, IF 25.245)' 2월 9일 字에 게재됐다. (논문명: Mesoporous thorn-covered core-shell cathode and 3D reduced graphene oxide aerogel composite anode with conductive multivalence metal sulfides for high-performance aqueous hybrid capacitors)
현재 리튬 이온 배터리는 대표적인 에너지 저장 시스템으로 에너지 밀도가 높다는 장점이 있다. 그러나 배터리 발화와 전해액 누출 같은 안정성 문제 및 리튬 광물의 높은 가격, 이온의 느린 삽입/탈리과정에 의한 낮은 출력 특성과 짧은 수명 등의 문제가 있어 많은 개선이 필요하다.
반면 물에서 작동하는 금속 산화물 기반 에너지 저장 소자는 안전하고 친환경적이며 가격이 상대적으로 매우 저렴하고 전해질 이온이 전극 물질의 표면에서만 반응해 빠른 충전-방전이 가능하다는 장점이 있다. 따라서 리튬 이온을 대체하면서 기존의 문제점을 극복할 수 있는 차세대 에너지 저장 소자로 주목받고 있다.
하지만 기존의 전기 전도성이 낮은 금속 산화물은 충전/방전 속도 면에서 성능이 떨어졌고 질량 당 표면적이 낮아 많은 양의 이온이 반응하지 못하면서 고용량을 구현하기에 어려움이 있었다.
이에 강정구 교수 연구팀은 전도성이 금속 산화물보다 100배 정도 높은 다가의 금속 황화물을 수계 에너지 저장 시스템의 각각 양극과 음극의 전극 물질로 활용해 고용량과 고출력의 성능을 달성했다. 양극 물질로 쓰인 니켈 코발트 황화물과 음극 물질로 쓰인 철 황화물은 모두 두 개의 산화수 상태로 존재해 작동 전압 범위 내에서 더 풍부한 레독스 반응을 일으켜 고용량을 달성할 수 있는 물질로 알려져 있다.
양극 물질은 표면이 가시로 둘러싸인 메조 다공성 코어-쉘 구조로 표면이 30nm(나노미터) 크기의 니켈 코발트 황화물 나노입자들로 이루어져 있어서 표면적이 높고 이온 확산 통로가 풍부하게 존재해 수계 이온 기반 에너지 저장 시스템에서 고용량과 고출력의 에너지 저장성능을 달성했다.
또한 음극 물질은 환원된 산화 그래핀이 쌓이지 않고 무질서하게 엉킨 3D 환원된 산화 그래핀 에어로젤 구조를 뼈대로 삼고 30nm(나노미터) 크기의다가의 철 황화물 나노입자들이 무수히 올려져 있는 구조로서 역시 풍부한 나노입자에 의해 활성 표면적이 높고 3D 그래핀 구조가 가지고 있는 이온 확산 통로 덕분에 높은 출력의 에너지 저장이 가능하다.
이러한 풍부한 메조 다공성의 이온 확산 통로가 있는 구조는 전해질 이온이 빠른 속도로 전극 깊숙이 빠른 침투가 가능해 고출력의 충전-방전 속도를 나타낼 수 있어 고출력 에너지 요구에 응할 수 있다. 또한 모든 활성물질이 나노입자로 이루어져서 기존의 표면적이 낮은 금속 산화물 전극의 낮은 용량의 문제를 해결했다.
이 수계 하이브리드 저장 소자는 기존의 수계 배터리에 비해 같은 수준의 저장용량을 유지하면서 100배 이상의 높은 에너지 저장용량을 보이며 기존의 리튬이온 배터리보다 높은 빠른 출력 밀도를 보인다. 또한 고용량으로 수십 초 내 급속충전이 가능해 안전성이 요구되는 여러 에너지 저장 시스템에 활용 가능할 것으로 기대된다.
< 그림 1. 이번 연구에서 개발한 전지 양극과 음극의 합성 원리와 에너지 저장 메커니즘 모식도 >
< 그림 2. 양극과 음극의 실제 이미지와 실제 구동 이미지 >
강 교수는 "친환경적인 이 기술은 물에서 작동해 전해액 누출 및 화재의 위험성이 없어 안전성이 뛰어나고 리튬을 이용하지 않아 저비용으로 제작할 수 있고 활용성이 뛰어나다ˮ라고 소개하면서 "표면에서의 빠른 화학반응을 이용한 고 표면적의 전극 물질을 이용해 기존보다 높은 전력 밀도와 에너지 밀도를 갖는 시스템 구현이 가능하므로 수계 에너지 저장 장치의 상용화에 이바지할 것이다ˮ고 말했다.
한편 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단과 수소에너지 혁신기술사업의 지원을 받아 수행됐다.
전체 태양 에너지의 약 52%를 활용하지 못하는 문제점을 가진 기존 페로브스카이트 태양전지가 한국 연구진에 의해 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상하는 혁신기술로 개발되었다. 이는 차세대 태양전지의 상용화 가능성을 크게 높이며, 글로벌 태양전지 시장에서 중요한 기술적 진전에 기여할 것으로 보인다. 우리 대학 전기및전자공학부 이정용 교수 연구팀과 연세대학교 화학과 김우재 교수 공동 연구팀이 기존 가시광선 영역을 뛰어넘어 근적외선 광 포집을 극대화한 고효율·고안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다고 31일 밝혔다. 연구팀은 가시광선 흡수에 한정된 페로브스카이트 소재를 보완하고, 근적외선까지 흡수 범위를 확장하는 유기 광반도체와의 하이브리드 차세대 소자 구조를 제시하고 고도화했다. 또한, 해당 구조에서 주로 발생하는 전자구조 문제를 밝히고 다이폴 층*을 도입해 이를 획기적으로 해결한 고성능 태양전지 소자를 발표했다
2024-10-31현재 그린 수소 생산의 한계를 극복할 새로운 수소 생산 시스템을 KAIST 연구진이 개발하여 수용성 전해질을 사용한 물분해 시스템을 활용해 화재의 위험을 차단하고 안정적인 수소 생산이 가능할 것으로 예상된다. 우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 아연-공기전지* 기반의 자가발전형 수소 생산 시스템을 개발했다고 22일 밝혔다. *공기전지: 일차 전지 중 하나로 공기 중 산소를 흡수해 산화제로 사용하는 전지이며, 수명이 긴 것이 장점이지만 기전력이 낮은 것이 단점임. 수소(H2)는 고부가가치 물질 합성의 원료로 기존 화석연료(휘발유, 디젤 등) 대비 3배 이상 높은 에너지밀도(142MJ/kg)를 지녀 청정 연료로 주목받고 있다. 그러나 현재 수소 생산 방식 대부분 이산화탄소(CO2)를 배출하는 문제가 있다. 아울러 그린 수소 생산은 태양전지, 풍력 등 신재생에너지를 동력원으로 물을 분해해 수소의 생산이 가능하나, 신재생에너지 기반의 동력원은 온도,
2024-10-221회 충전에 500km 이상 운행할 수 있는 전기자동차를 실현하기 위해서는 고에너지밀도 전지가 필수적이다. 팩 단위*에서 고에너지 밀도가 확보 가능하다는 장점이 있는 리튬인산철 양극은 낮은 전자전도도를 가져 계면층을 형성하기 어렵다는 단점이 있다. KAIST 연구진이 리튬인산철 양극의 낮은 전자전도도를 개선한 전해질 첨가제를 개발하여 화제다. *팩단위: 현재 전기차용 배터리는 단일 전지(Cell)를 적층하여 배터리 관리시스템(BMS)과 냉각장치가 포함된 모듈(Module)을 구성하고, 이를 다시 모아 관리시스템으로 구성한 팩(Pack)으로 구성되어 있음 우리 대학 생명화학공학과 최남순 연구팀이 저비용 리튬인산철 양극과 흑연 음극으로 구성된 리튬이온 이차전지의 상온 및 고온 수명 횟수를 늘린 전해질 첨가제 기술을 개발했다고 16일 밝혔다. 기존 전해질 첨가제 연구는 주로 흑연 음극을 보호하기 위해 설계돼 높은 이온전도도를 가짐과 동시에 전해질 부반응이 억제되고 수지상 리튬
2024-05-16온실가스 배출량을 '0'으로 만드는 글로벌 약속 '탄소중립(Net-zero)' 달성을 위해 탄소 배출을 줄이는 수소 에너지의 활용 및 생산은 선택이 아닌 필수적인 요소로 부상하고 있다. 이를 위한 에너지 변환 기술 중 고효율 전력 변환 및 그린수소 생산이 가능한 프로토닉 세라믹 전기화학전지(PCEC)가 미래 수소 에너지 사회를 촉진할 차세대 기술로 주목받고 있다. 우리 대학 기계공학과 이강택 교수, 신소재공학과 정우철 교수, 한국에너지기술연구원 이찬우 박사, 전남대학교 송선주 교수 공동 연구팀이 프로토닉 세라믹 전기화학전지의 산화물 전극 결정구조 제어를 통해 양성자 확산경로를 2차원에서 3차원으로 확장하는 데 성공해 전극의 촉매활성을 크게 향상시켰다고 14일 밝혔다. 비대칭 구조를 갖는 페로브스카이트 산화물계 전극은 구조적인 한계로 인해 양성자의 격자 내 이동이 제한으로 촉매 활성이 낮아 연료전지의 성능이 낮아진다는 문제점이 있었다. 연구팀은 이를 해결하기 위해, 이종
2024-05-14전기자동차, 스마트폰 등에 사용되는 리튬이온전지 원가 중 가장 높은 비율을 차지하는 가장 비싼 재료는 니켈, 코발트와 같은 고가 희귀금속이 다량 포함된 양극재다. 국제공동연구진이 리튬이온전지의 에너지 밀도와 가격 경쟁력을 모두 높이는 새로운 전략을 제시했다. 우리 대학 신소재공학과 서동화 교수 연구팀이 UNIST, 캐나다 맥길대(McGill University)와 공동연구를 통해 리튬이온전지 양극의 핵심 광물인 값비싼 니켈, 코발트 없이도 에너지밀도가 40% 향상된 고성능 차세대 리튬이온전지 양극을 개발했다고 1일 밝혔다. 국제공동연구팀은 망간 기반의 양이온-무질서 암염(Disordered rock-salt, 이하 DRX) 양극재에 주목했다. DRX 양극재는 값싸고 매장량이 풍부한 망간, 철 등을 사용할 수 있으면서 양극재 무게 기준 기존 상용화된 삼원계양극재(약 770Wh/kg)보다 높은 에너지밀도(약 1,000Wh/kg)를 가질 수 있기 때문이다. 무엇보다, 값비싼 니
2024-05-02