< 윤동기 교수 >
우리 학교 나노과학기술대학원 윤동기 교수 연구팀은 자기조립(self-assembly) 현상을 이용해 매우 정밀한 나선형 나노구조체를 개발해 세계적 학술지인 미국립과학원회보(PNAS) 10월 7일자에 논문이 게재됐다.
이번에 개발된 기술로 3차원구조 중에서도 가장 구현하기 어렵다는 나선형 구조를 넓은 면적에 다양하게 변형해 만들 수 있다. 액정(액체와 결정의 중간상태)물질로 만든 이 구조는 20~200nm(나노미터) 크기의 제한된 공간에서 균일한 나선 형태를 유지했다. 또 나노구조체의 지름이 커짐에 따라 나선 패턴의 간격도 일정하게 늘어나는 특성을 보였다.
이 기술을 활용하면 전자기장에 민감하게 반응하는 액정 소재의 고유성질과 융합해 고효율의 광전자 소자 개발에 도움이 될 것으로 학계는 기대하고 있다.
나아가 현재 반도체 제조공정에서 사용 중인 2차원 광식각공정에서 벗어나 3차원 패터닝 기술로도 발전시킬 수 있다. 연구팀의 기술을 기반으로 3차원 반도체가 개발되면 지금보다 최소 수백배 많은 데이터를 저장할 수 있게 된다. 또 공정을 획기적으로 줄여 제조비용도 크게 절감할 수 있을 것으로 전망된다.
이번 연구의 핵심 기술인 ‘한정된 공간에서의 자기조립’이란, 아이들의 장난감인 레고블럭 놀이처럼 주위의 환경(온도, 농도, pH 등)에 따라 물리적으로 조립과 분리가 가능한 다양한 연성재료(고분자, 액정, 생체분자 등)를 수십 나노미터의 공간 속에서 복잡한 나노구조체를 제어하는 기술이다.
연구팀은 전기화학적 반응을 통해 만들 수 있는 다공성 양극산화알루미늄막을 이용해 수십 나노미터 수준의 한정된 공간을 만들었다. 이후 수 나노미터 수준에서 휘어져 있는 액정 분자가 형성하는 나선형 나노구조체를 그 공간 속에서 형성시켜 독립적으로 제어된 나선 나노구조체를 구현하는 데 성공했다.
윤동기 교수는 이번 연구에 대해 “액정물질이 형성하는 나선 나노구조체 제어의 물리·화학적 원리 규명에 세계최초로 성공했다”며 “이번 기술로 다양한 유기분자가 이루는 복잡한 나노구조체들을 기판의 표면 개질 및 한정된 공간을 이용해 제어할 수 있어 향후 유기분자 기반 나노구조체 연구에 커다란 기여를 할 것”이라고 연구 의의를 설명했다.
이와 함께 “개발된 원천기술을 바탕으로 NT(나노테크놀로지)와 IT(정보테크놀로지)가 접목될 수 있는 전기가 마련돼 LCD 등 액정관련 분야에서 차세대 신성장동력을 창출할 수 있을 것”이라고 말했다.
KAIST 나노과학기술대학원 윤동기 교수팀(제1저자: 김한임 박사과정, 이선희 박사과정)이 주도하고 포항가속기연구소 신태주박사, 미국 메릴랜드주립대학 이상복 교수와 콜로라도주립대학 노엘 클락(Noel Clark) 교수가 참여한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 일반연구자지원사업(우수신진), 나노소재원천기술개발사업, BK21 플러스사업의 지원으로 수행됐다.
그림1. 나선 나노구조체의 전자현미경 사진과 개념도
A. 다공성 양극알루미늄 나노채널 속에서 형성된 단일 나선 나노구조체(노란선 기준 아래)와 미처 나노 채널속에 들어가지 못해 형태 및 성장 방향이 불규칙하게 존재하는 나선 나노구조체(노란선 기준 위)
B. 나선 나노구조체가 양극산화물 속에 들어가는 현상을 보여주는 개념도. 양극산화물 나노채널의 지름은 20~200nm, 전체 막 두께는 5 um~ 수십 um로 조절이 가능
C. B방법을 통해 형성된 나선 나노구조체는 나선 반주기(half-pitch)가 100~120nm 범위에서 1nm 간격으로 조절이 되며 지름이 20~80 nm까지 자유롭게 제어할 수 있음
그림2. 제조된 나선 나노구조체의 전자현미경 사진
30nm(A), 60nm(B), 80nm(C) 지름의 다공성 양극알루미늄 나노채널(왼쪽-위) 속에서 형성된 나선 나노구조체 단면의 주사전자현미경 사진(왼쪽-아래)과 나노채널이 제거된 나선 나노구조체의 투과전자현미경 사진(오른쪽)
나노채널의 지름이 증가할수록 아주 서서히 나선 나노구조체의 나선 반주기가 100nm(A)에서 117nm(C)까지 증가함을 관찰할 수 있었고, 꼬인 부분의 각도(Ψ)의 증가를 통해 나선 나노구조체의 크기를 1nm수준에서 미세하게 제어 가능함을 보였음
그림3. 대표 그림
지구 온난화 등의 심각한 환경 문제로 인해 화석 연료를 대체할 수 있는 친환경 기반 화학물질 생산 기술개발의 필요성이 지속적으로 증가하고 있다. 우리 연구진이 화학적인 공정이 아닌 시스템 대사공학을 활용, 플라스틱의 원료와 식품, 의약품 등의 합성에 사용되는 매우 중요한 산업 기반 화학물질인 숙신산을 세계 최고 수준으로 생산하는 데 성공해 화제다. 우리 대학 생명화학공학과 김지연 박사과정생과 이종언 박사를 포함한 이상엽 특훈교수 연구팀이 마그네슘(Mg2+) 수송 시스템을 최적화함으로써 고효율 숙신산 생산 균주를 개발했다고 11일 밝혔다. 이상엽 특훈교수 연구팀은 한우의 반추위에서 분리한 미생물인 ‘맨하이미아 (Mannheimia)’의 대사회로를 조작하고 마그네슘 수송 시스템을 최적화해 세계 최고 수준의 생산성을 갖는 숙신산 생산 기술을 개발했다. 연구팀은 미생물 발효 과정 중 pH 조절을 위해 사용되는 다양한 알칼리성 중화제가 숙신산 생산에 미치는
2024-09-11최근까지도 다양한 웨어러블 시스템을 위한 섬유의 기능화를 위한 시도가 이뤄지고 있다. 그중에서, 나노구조체의 전사 기술은 섬유의 굴곡진 형상과 낮은 표면 접착력으로 인해 웨어러블 시스템을 위한 기능성 섬유 제조에 있어서는 한계를 마주했다. 공동연구팀은 신축성이 우수한 마이크로 스케일의 전기방사 섬유를 개발하여 웨어러블 헬스케어 응용에 접목돼, 땀의 미세한 포도당 수치 진단이 가능하고 다양한 기능성 의복의 고안 및 웨어러블 시스템 영역을 확장하게 할 기술을 개발했다. 우리 대학 기계공학과 박인규 교수와 한국기계연구원(KIMM) 정준호 박사 공동연구팀이 `전기방사 섬유 상 금속 및 금속산화물 기반 나노구조체 전사 기술'을 개발했다고 13일 밝혔다. 연구팀은 일상 속 웨어러블 헬스케어 응용을 위해 기반 고분자의 열적 거동 특성(열 변형 특성) 및 산소 플라즈마 처리를 통한 표면 특성을 고려해, 신축성이 우수한 마이크로 스케일의 전기방사 섬유 위 금속/금속산화물 나노구조체의
2024-06-13방광절제술을 받은 환자들의 성공적인 재활을 위해 카테터* 삽입없이 방광 기능을 안전하게 모니터링하는 생체전자 시스템이 개발되어 화제다. *카테터: 방광에 삽입하는 고무 또는 금속제의 가는 관 우리 대학 전기및전자공학부 권경하 교수팀이 미국 노스웨스턴대 김지혜 박사와 공동연구를 통해 방광의 크기 및 압력 변화를 정확하게 측정하는 디지털 헬스케어 기술을 개발했다고 16일 밝혔다. 부분적 방광절제술*은 긴 회복 기간이 필요하며, 이 기간에 요로 동역학 검사**(이하 UDS)를 통해 몸 밖으로 소변을 배출하는 기능을 간헐적으로 평가한다. 그러나 UDS는 환자 친화적이지 않으며 사용자마다 결과에 변동성이 있고, 연속적인 데이터 수집 능력이 제한된다. 또한 카테터 관련 요로 감염의 위험을 초래하며, 고위험 환자에게서는 상행성 신우신염으로 진행되기도 한다. 이러한 UDS의 적절한 대안으로, 요로에 카테터를 삽입하지 않고 방광의 상태를 연속적이고 실시간으로 모니터링할 수 있는 기술이
2024-04-16흡연과 음주는 세포에서 활성산소의 부하를 증가시키고 높은 수준의 산화스트레스를 유발한다고 알려져 있다. 하지만 아직 산화스트레스가 구강암의 발달을 촉진하는 구체적인 기전은 명확히 밝혀지지 않았다. 우리 대학 의과학대학원 김준 교수 연구팀이 발암 위험 인자인 흡연과 음주가 구강암의 발생과 성장에 관여하는 새로운 기전을 규명했다고 21일 밝혔다. 연구팀은 이번 연구에서 흡연 및 음주가 직접적인 DNA 손상뿐 아니라 산화스트레스를 통한 전사 조절(발암 유전자의 발현 증가)로 구강암의 증식을 촉진하는 경로를 밝혀서 항암제 개발의 새로운 단서를 확보했다. 연구팀은 구강암 환자에서 특이적으로 높게 발현되는 TM4SF19 (Transmembrane 4 L Six Family Member 19) 단백질에 주목했다. 이 단백질은 산화스트레스에 의해 두 개의 분자가 중합해 형성되는 이합체 물질을 형성해 발암 유전자로 알려진 YAP(yes-associated protein)의 발현을 일시적
2024-02-21최근, 나노 스케일의 물리/화학 센서부터 미터 스케일의 에너지 수확 소자까지, 전자 소자에 적용되는 소재 및 구조들의 형태가 점점 고도화되며 복잡한 형태로 발전해나가고 있다. 그에 따라 범용성이 높은 3차원 구조체 제작 기술의 개발에 많은 연구자들이 관심을 두고 있다. 우리 대학 기계공학과 박인규 교수와 한국기계연구원(KIMM) 정준호 전략조정본부장 공동연구팀이 `차세대 3차원 나노구조체 인쇄 기술'을 개발했다고 4일 밝혔다. 공동연구팀은 신축 기판 위 2차원 나노구조체의 안정적 구현과 인쇄될 기판의 표면 마이크로 구조 설계를 통해 3차원 나노구조체를 인쇄할 수 있음을 처음으로 선보였다. 기계공학과 안준성 박사후연구원이 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 2023년 2월 온라인판에 출판됐다. (논문명: Nanoscale three-dimensional fabrication based on
2023-04-04