< (왼쪽부터) 신소재공학과 정우철 교수, 기계공학과 이강택 교수 >
우리 대학 신소재공학과 정우철 교수, 기계공학과 이강택 교수와 충남대학교 김현유 교수 공동 연구팀이 촉매 반응점 탐색 및 각 지점의 활성을 정량적으로 측정할 수 있는 금속 나노입자 기반 분석 플랫폼 개발에 성공했다고 28일 밝혔다.
촉매란 반응 과정에서 소모되거나 변하지 않으면서 반응 속도를 빠르게 만드는 물질을 말하며, 반응에 참여하지만 소모되지 않기 때문에 소량만 있어도 반응 속도에 지속적으로 영향을 미칠 수 있는 물질이다. 반응을 빠르게 하는 촉매 반응은 더 적은 활성화 에너지를 필요로 하기 때문에 다양한 산업에 활용되고 있다. 백금 등을 이용해 화석 연료의 연소로 인해 발생하는 배기가스의 해로운 부산물을 분해하는 반응을 예로 들 수 있다.
연구팀은 균일한 크기의 금속 나노입자 합성 기술과 3차원 전자 단층촬영 기법을 활용해 촉매 핵심 반응점인 금속-가스-산화물 및 금속-가스상 접합 계면의 수를 정량적으로 분석했으며, 이 같은 결과를 측정된 촉매 반응성과 연계시키는 방식으로 촉매 반응 활성도의 정량적 분석이 가능한 측정 플랫폼을 설계했다. 이러한 기술은 특정 반응에 활용이 제한되지 않기 때문에 향후 여러 촉매 반응 분야에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
신소재공학과 이시원, 하현우 박사후연구원, 기계공학과 배경택 박사과정생 공동 제1 저자로 참여한 이번 연구는 재료화학분야 국제 학술지 `켐(Chem, IF=22.804)'에 12월 23일 자 온라인판에 게재됐다. (논문명 : A measure of active interfaces in supported catalysts for high-temperature reactions).
< 그림 1. 백금나노입자-세륨산화물 촉매로 구성된 정량분석 플랫폼 >
금속 나노입자 촉매는 매우 적은 양으로 우수한 촉매 활성을 보일 수 있다는 가능성으로 에너지·환경 등 여러 분야에서 큰 관심을 받고 있다.
하지만 나노입자로 구성된 촉매 소재는 높은 작동온도에서 서로 응집되는 특성이 있으며 이는 결과적으로 촉매 활성을 저해하는 한계로 작용한다. 그뿐만 아니라, 실제 반응 작동 환경에서 금속 입자 촉매의 구체적인 반응 활성 지점이 어디인지, 각 지점에서의 반응활성도는 얼마나 되는지 그 양을 정량적으로 비교·분석할 수 있는 기술이 없어 해당 분야 발전에 한계가 있었다.
연구팀은 문제 해결을 위해 균일한 크기로 금속 나노입자 촉매를 합성해 입자의 구조를 제어하는 데 성공했으며, 이를 산화물 막으로 감싸는 코팅기술을 적용해 고온에서 나노입자가 응집되는 현상을 해결했다. 여기에 3차원 전자 단층촬영 기법, 스케일링 관계식, 그리고 밀도범 함수 이론을 적용하고 이를 다양한 조건에서 측정한 반응성과 연계시킴으로써 구체적인 반응 지점 및 활성을 규명했다.
연구팀은 이번 연구에서 대표적 귀금속 촉매인 백금과 고온 촉매 반응인 메탄산화반응을 활용했으나, 이번 기술은 향후 소재 종류 및 반응 종류에 상관없이 다양한 분야에 폭넓게 응용 및 적용될 수 있다.
< 그림 2. 반응 조건에 따른 금속 나노입자 크기에 따른 반응성 및 핵심 반응 지점의 기여도 평가 결과 >
정우철 교수는 "이번 연구를 통해서 주어진 반응에 대한 금속 나노입자 촉매의 반응 특성을 정량적으로 분석할 수 있는 고신뢰성 측정 플랫폼을 구축했다ˮ며, "이는 앞으로 우수한 복합촉매 소재 선별 등 촉매설계 종합 솔루션을 제공하는 데 활용될 것으로 기대한다ˮ 라고 말했다.
우리 대학 물리학과 양용수 교수, GIST 김봉수 교수 연구팀에서도 공동으로 참여한 이번 연구는 한국연구재단 나노·소재원천기술개발사업의 지원을 받아 수행됐다.
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21선도적 신약 개발에서는 약효의 핵심 원자를 손쉽고 빠르게 편집하는 신기술은 의약품 후보 발굴 과정을 혁신하는 원천 기술이자, 꿈의 기술로 여겨져 왔다. 우리 대학 연구진이 약효를 극대화하는 단일 원자 편집 기술 개발에 세계 최초 성공했다. 우리 대학 화학과 박윤수 교수 연구팀이 오각 고리 화합물인 퓨란의 산소 원자를 손쉽게 질소 원자로 편집·교정하여, 제약 분야에서 널리 활용되는 피롤 골격으로 직접 전환하는 원천 기술 개발에 성공했다고 8일 밝혔다. 해당 연구성과는 그 중요성을 인정받아 과학 분야 최고권위 학술지인 ‘사이언스(Science)’誌 에 지난 10월 3일 게재됐다. (논문명: Photocatalytic Furan-to-Pyrrole Conversion) 많은 의약품은 복잡한 화학 구조를 갖지만, 정작 이들의 효능은 단 하나의 핵심 원자에 의해 결정되기도 한다. 대표적으로, 산소, 질소와 같은 원자는 바이러스에 대한 약리 효과
2024-10-10전 세계의 플라스틱 생산량이 증가함에 따라 폐기되는 플라스틱의 양도 증가하게 돼 여러 가지 환경적, 경제적 문제를 일으키고 있다. 한국 연구진이 고성능 촉매를 개발해 플라스틱 폐기물의 분해와 재활용을 쉽고 경제적으로 할 수 있도록 하는 기술을 개발하여 화제다. 우리 대학 생명화학공학과 최민기 교수, 충남대학교 에너지 과학기술 대학원 신혜영 교수 공동연구팀이 폐플라스틱의 분해 및 재활용 공정의 중요 반응인 탈염소 반응의 반응 메커니즘을 규명하고 미량의 백금으로도 염소를 효과적으로 제거할 수 있는 촉매를 개발했다고 26일 밝혔다. 플라스틱의 재활용을 위한 다양한 연구가 진행되고 있는데, 특히 열분해를 이용한 화학적 재활용 방법은 복잡하고 비경제적인 플라스틱 폐기물의 분류 과정을 생략할 수 있어 산업적으로 큰 주목을 받고 있다. 또한 이때 생성되는 유분은 플라스틱의 원료인 에틸렌, 프로필렌으로 변환이 가능하기 때문에 완벽한 플라스틱의 순환 경제를 가능케 한다. 하지만 폐플라스
2024-09-28후쿠시마 오염수가 2023년부터 해양에 방류되면서 중수로 원전 운영 시 발생하는 대표적인 방사성 물질인 삼중수소에 대한 대중적 관심이 크게 늘어났다. 삼중수소는 주로 물 분자에 포함돼 존재하기 때문에 해양 생태계와 환경에 위험을 초래할 수 있어 삼중수소 제거 설비가 필요한데, 한국 연구진이 촉매를 이용해 획기적으로 제거할 수 있는 기술을 개발해 화제다. 우리 대학 생명화학공학과 고동연 교수 연구팀이 한국원자력연구원(원장 주한규) 박찬우 박사 연구팀과의 공동연구를 통해 원전 폐수에 함유된 삼중수소 제거 공정을 위한 새로운 구조의 이중기능* 소수성 촉매를 개발했다고 27일 밝혔다. 연구팀의 촉매는 특정 반응 조건에서 최대 76.3%의 반응 효율을 보였으며, 특히 현재까지 밝혀진 바가 거의 없는 수백 ppm 수준의 저농도 동위원소에 대한 촉매의 작용을 구체적으로 확인했다. *이중기능: 액체 상태의 물은 차단하고 기체 상태의 수증기는 통과하는 성질을 말함 현재 삼중수소 제거에
2024-08-27우리 대학 4개 연구실이 과학기술정보통신부가 주관하는 우리 대학 4개 연구실이 과학기술정보통신부가 주관하는 ′2023 안전관리 우수연구실 인증′을 취득했다. 정부가 2013년 도입한 '안전관리 우수연구실 인증제'는 대학이나 연구기관 등에 설치된 과학기술 분야 연구실이 자율적으로 안전관리 역량을 강화할 수 있도록 마련한 제도다. 안전관리 표준모델을 발굴하고 확산을 목표로 안전관리 활동이 우수한 연구실에 전문가의 심사를 통한 인증을 부여하고 있다.이번에 신규 인증을 취득한 연구실은 ①고분자 에너지 전자 연구실(김범준 교수, 생명화학공학과), ②고등 광 재료 및 소자 연구실(신종화 교수, 신소재공학과), ③지속가능촉매연구실(박윤수 교수, 화학과), ④무기합성 연구실(백윤정 교수, 화학과) 등 총 4개다. 해당 연구실들은 ▴연구실 안전 환경 시스템 분야(30점) ▴연구실 안전 환경 활동 수준 분야(50점), ▴연
2024-02-15