< (왼쪽부터) 기계공학과 김형수 교수, 편정수 박사과정 >
우리 대학 기계공학과 김형수 교수팀이 디스플레이 소자의 핵심 물질인 퀀텀닷의 마름 자국을 패턴의 형태에 상관없이 원형부터 다각형까지 완벽하게 균일 패터닝 할 수 있는 기술을 구현했다고 2일 밝혔다.
기계공학과 편정수 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 지난 2월 7일 字 온라인 출판됐다. (논문명: Self-Induced Solutal Marangoni Flows Realize Coffee-Ring-Less Quantum Dot Microarrays with Extensive Geometric Tunability and Scalability, https://doi.org/10.1002/advs.202104519)
최근 퀀텀닷은 차세대 핵심 디스플레이용 소재로 각광받고 있다. 이를 잉크젯 프린팅 기술을 이용해 패터닝(형태화)하려는 노력을 크게 하고 있지만, 양산성이나 해상도의 제한적 문제 그리고 공정 과정 중에 발생하는 커피링 현상으로 효율이 크게 떨어지는 이슈가 큰 문제로 지적되고 있다.
커피링 자국은 용매 방울이 고체 표면 위에서 마르면서 물방울 표면의 상대적 불균일 증발률 때문에 발생하게 된다. 김 교수는 커피링을 제어하는 연구를 수년간 해오면서 얻은 노하우를 바탕으로 최근 획기적으로 커피링을 소멸시키는 기술을 발표한 바 있다. (DOI: https://doi.org/10.1039/D0SM01872D)
커피링 자국 이외에도 디스플레이의 해상도를 높이기 위해 다양한 모양의 패턴들이 제안되고 있으나, 일반적으로 다각형의 경우 커피링의 정도가 원형의 경우보다 더욱 심해지는 경향을 띤다. 이번 연구에서는 퀀텀닷 패턴의 기하학적 형태에 무관하게 커피링을 완전히 소멸시킬 수 있는 기술을 소개하고 있다. 연구팀은 퀀텀닷이 녹아 있는 용매의 성분을 적절히 조율하고 이 액적을 복잡한 물리-화학적 공정 없이 단순 증발 과정을 거쳐 100 마이크로미터(㎛) (1만 분의 1m) 수준의 커피링이 전혀 없는 균일 패턴을 구현하는 데 성공했다.
< 그림 1. 다중배열 균일한 퀀텀닷 패턴 제작기술 모식도 >
연구팀 관계자는 "QLED용 퀀텀닷 패턴은 주변의 공정 요인에 민감하게 변화할 수 있는데, 잉크젯 기반의 토출식 프린팅 기술에 집단 액적의 증발을 통한 자발적으로 발생하는 상호 마랑고니 작용 효과들을 이용해 소재의 손상을 방지하고 패턴의 균일도를 확보했다ˮ고 밝혔다. 실험적 기술 개발뿐 아니라 이론 모델을 바탕으로 마랑고니 발생 원리와 마랑고니 혼합 유동의 세기 조절에 대한 근본적 설명과 제어 변수들을 제공하고 있다.
김형수 교수는 "이번 연구 결과를 실제 디스플레이 양산을 위한 잉크젯 프린팅 공정에 활용하면 적녹청 퀀텀닷 패턴을 물리-화학적 복잡한 공정 없이 높은 효율의 차세대 QLED 디스플레이 구현에 적용 가능할 것ˮ이라고 말했다. 한편 이번 커피링을 없애는 기술을 이용해 "인쇄전자에 사용되는 값비싼 소재들로 확대하면 효과적으로 대면적 프린팅할 수 있고 패터닝 공정도 간소화돼 경제성을 높이는 데 기여할 것이다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 지원을 받아 개인 기초 중견연구(NRF-2021R1A2C2007835)의 지원을 받아 수행됐고, 우리 대학 신소재공학과 정연식 교수 연구팀과의 협업을 통해 수행됐다.
3차원 광학 나노구조체는 빛의 진폭, 위상, 편광 상태를 정밀하게 조작할 수 있어 포토닉스 분야에서 큰 관심을 받고 있다. 한국 연구진이 기존 기술로는 구현이 어려웠던 3차원 퀀텀닷 나노구조체를 정교하게 쌓아 올리는 적층 방식으로 구현하는 데 성공했다. 우리 대학 신소재공학과 정연식 교수, 전기및전자공학부 장민석 교수, 동국대학교 최민재 교수 공동 연구팀이 초미세 전사 프린팅 기반으로 3차원 퀀텀닷 구조 제작 기술을 개발했다고 27일 밝혔다. 연구팀이 개발한 이 기술은 대부분의 나노입자에 적용될 수 있어 범용성이 뛰어나고 우수한 패턴 품질을 제공할 수 있다. 또한, 프린팅 방식으로 대면적화가 가능해 고성능 소자 양산에 활용할 수 있는 장점을 가진다. 특히 편광 빛에 대한 선택적 반응을 보이는 구조적 비대칭성을 가진 대면적 카이랄 구조체를 구현해 기존 최고 기록인 19도* 대비 향상된 약 21도의 세계 최고 수준 **원편광 이색성(Circular dichroism) 성능
2024-09-28디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다. 그러나 InP 양자점은 외부 환경에
2023-09-26양자정보통신 기술에 필수적인 양자광원을 구현하기 위한 플랫폼으로 반도체 양자점이 주목받고 있는데, 양자점을 이용하면 빛의 최소 알갱이인 광자를 정확히 원하는 시점에 하나씩 발생하는 단일광자 발생기를 만들 수 있기 때문이다. 다만, 양자점과 광학적 특성이 꼭 들어맞는 공진기 구조를 정밀하게 설계하고 결합해야만 발광 성능이 우수한 단일광자 발생기를 만들 수 있다. 우리 대학 물리학과 조용훈 교수 연구팀이 한국전자통신연구원(ETRI) 고영호 박사 연구팀과 한국과학기술연구원(KIST) 송진동 박사 연구팀과의 공동연구를 통해, 고성능의 단일 양자점 양자광원을 고밀도 양자점 기판 위에서 식각과 같은 파괴적인 공정없이 맞춤형으로 다량 만들 수 있는 원천 기술을 개발했다고 18일 밝혔다. 공동 연구팀은 우선 고밀도 양자점 중에서 단 하나의 양자점을 선별해 내는 비파괴적인 선택 방법을 고안하고, 이렇게 선택된 양자점의 광학적 특성을 분석하여 그 특성과 꼭 들어맞는 맞춤형 공진기를 양자점
2023-04-18우리 대학 생명화학공학과 박현규 교수, 신소재공학과 정연식 교수 공동 연구팀이 암 관련 마이크로RNA를 다중 검출할 수 있는 다색 양자점(퀀텀닷) 어레이를 개발했다고 20일 밝혔다. 신소재공학과 남태원 박사와 생명화학공학과 박연경 박사가 공동 제1 저자로 참여한 이번 연구는 미국화학회(American Chemical Society)가 발행하는 국제 학술지 `ACS 나노(ACS Nano)'에 2022년도 6월 15일 字 온라인판에 게재됐다. (논문명: Polychromatic quantum dot array to compose a community signal ensemble for multiplexed miRNA detection) 마이크로RNA는 18~25개의 염기서열로 이루어진 짧은 RNA로, 유전자 발현을 조절함으로써 세포 성장 및 분화와 같은 다양한 세포 활동을 제어한다. 마이크로RNA의 비정상적인 발현은 암을 포함한 다양한 질병과 밀접하게 연관돼있어, 여러 가지
2022-07-20우리 대학 생명화학공학과 이도창 교수, 이상엽 특훈교수, 박영신 연구교수 연구팀이 디스플레이 소재인 양자점(퀀텀닷)을 이용해 *질소 고정 박테리아의 암모니아 생산 효율을 대폭 늘렸다고 16일 밝혔다. ☞ 질소 고정(Nitrogen Fixation) : 공기 중 질소 기체 분자(N₂)를 암모니아(NH₃)를 비롯한 질소화합물로 전환하는 과정을 말한다. 이 교수 연구팀은 양자점에 의해 흡수된 빛 에너지가 박테리아의 암모니아 합성 반응에 사용되도록 설계했으며, 그 결과 박테리아의 암모니아 생산량을 큰 폭으로 증가시킬 수 있었다. 이를 위해 연구팀은 양자점을 질소고정 박테리아 안에 더 많이 넣을 수 있는 방법을 제시했다. 생명화학공학과 고성준 박사가 제1저자로 참여한 이번 연구의 결과는 국제 학술지 `미국 화학회지(JACS)'에 표지 논문으로 선정돼 출판됐다. (논문명 : Light-Driven Ammonia Production by Azotobacter vinelandii Cu
2022-06-16