< 강정구 교수, 김용훈 교수 >
우리 대학 EEWS 대학원 강정구 교수, 김용훈 교수 공동 연구팀이 태양광을 이용해 이산화탄소를 메탄올로 변환시킬 수 있는 광촉매를 개발했다.
이 기술은 값싼 물질에 간단한 공정으로 이산화탄소를 고부가가치의 화학물질로 변환시킬 수 있다. 향후 탄소배출규제 시행에 따른 이산화탄소 처리 및 저감 문제를 해결할 수 있는 대안 기술이 될 것으로 기대된다.
이동기, 최지일 박사가 참여한 이번 연구는 에너지 분야 학술지 ‘어드밴스드 에너지 머터리얼스(Advanced Energy Materials)’ 5월 9일자 온라인 판에 게재됐다.
매년 우리나라에서는 6억 톤의 이산화탄소가 발생하고 세계적으로는 250억 톤에 이른다. 이산화탄소를 메탄올로 변환할 수 있다면 1톤 당 약 40만원에 판매가 가능해지고, 운반의 문제를 해결할 수 있다.
경제 및 환경문제에서도 효과가 클 것으로 예상되기 때문에 과학계 및 관련 산업계는 이산화탄소를 메탄올로 변환하기 위한 노력을 하고 있다.
식물의 광합성 효과를 모방한 인공광합성 기술은 태양에너지만으로 메탄올과 같은 고에너지 밀도의 화학물질을 제조할 수 있다. 이 반응을 이끌어내기 위해서는 백금, 금, 루테늄과 같은 금속 광물이 필요하다.
하지만 낮은 에너지 변환 효율 문제가 개선되지 않아 광촉매 물질의 보호막 정도로만 사용되고 있다. 에너지 효율이 낮은 이유는 태양 에너지의 극히 일부만 활용 가능해 전자 전달 능력이 낮기 때문이다.
연구팀은 문제 해결을 위해 콜드 플라즈마(cold Plasma) 반응을 기반으로 한 기술을 이용했다. 기존 산화물 공정은 한 물질에 질소와 수소 처리를 동시에 구현하는 것이 불가능했지만, 기체 콜드 플라즈마 기술을 이용하면 상온에서도 고 반응성의 수소 및 질소 라디칼을 형성할 수 있다. 이를 통해 순간적 반응만으로 금속 산화물 내부에 질소 및 수소를 주입하는 데 성공했다.
이 기술로 자외선(UV)영역에 국한되는 이산화티타늄의 빛 감지 범위를 가시광선 영역까지 확대시켰고, 전자 전달 능력을 1만 배 증가시킴으로써 귀금속 광물 없이도 이산화탄소를 메탄올로 변환시킬 수 있었다.
또한 인공광합성 반응이 잘 일어나도록 도와주는 별도 화학첨가제나 전기적 에너지 없이도 반응을 가시광 범위까지 이끌어냈다.
이산화티타늄 광촉매는 해당 물질이 갖는 이론한계치의 74%에 달하는 광전류를 발생시켰고, 이산화탄소를 이용한 메탄올 발생량이 25배 이상 향상됐다.
연구팀은 슈퍼컴퓨터를 이용한 원자 수준 모델링을 통해 수많은 변수를 측정함으로써 촉매 반응 향상의 원리를 이론적으로 규명했다.
강 교수는“이 기술을 기반으로 향후 산업체에서 대량 생산할 수 있도록 기술을 발전시키는 것이 목표다”고 말했다.
이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 태양광을 이용한 이산화탄소의 메탄올로의 변환 과정
그림2. 가시광에서 연료변환이 가능하도록 만든 코어-쉘 촉매
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21친환경 에너지 기반 자동차, 모빌리티, 항공우주 산업군 등에 활용되는 구조배터리는 높은 에너지 밀도를 통한 에너지 저장과 높은 하중 지지의 두 기능을 동시에 충족되어야 한다. 기존 구조배터리 기술은 두 가지 기능이 상충하여 동시에 향상하기 어려웠지만 우리 연구진이 이를 해결하기 위한 기반 기술 개발에 성공했다. 우리 대학 기계공학과 김성수 교수 연구팀이 하중 지지가 가능하고 화재 위험이 없고 얇고 균일한 고밀도 다기능 탄소섬유 복합재료 구조 배터리*를 개발했다고 19일 밝혔다. *다기능 복합재료 구조 배터리(Multifunctional structural batteries): 복합재료를 구성하는 각 소재가 하중 지지 구조체 역할과 에너지 저장 역할을 동시에 수행할 수 있다는 점을 의미 초기의 구조 배터리는 상용 리튬이온전지를 적층형 복합재료에 삽입한 형태로, 기계적-전기화학적 성능 통합 정도가 낮으므로, 이는 소재 가공, 조립 및 설계 최적화에 어려움이 있어 상용화되기
2024-11-19머리카락 두께의 수만 분의 1도 관찰할 수 있는 초정밀 현미경으로 특수 전자소자를 측정할 때 발생하던 오차의 원인이 밝혀졌다. 한미 공동 연구진이 그동안 측정 대상 물질의 특성으로 여겨졌던 오차가, 실제로는 현미경 탐침 끝부분과 물질 표면 사이의 극미세 공간 때문이라는 사실을 밝혀낸 것이다. 이번 연구는 반도체, 메모리 소자, 센서 등에 활용되는 나노 소재 특성을 정확하게 분석하여 관련 기술 발전에 크게 기여할 것이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 미국 버클리 대학 레인 마틴(Lane W. Martin) 교수팀과의 국제 공동연구를 통해, 주사탐침현미경 측정의 최대 난제였던 신호 정확도를 저해하는 핵심 요인을 규명하고 이를 제어하는 획기적인 방법을 개발했다고 18일 밝혔다. 연구팀은 현미경 탐침과 시료 표면 사이에 존재하는 비접촉 유전 간극이 측정 오차의 주요 원인임을 밝혀냈다. 이 간극은 측정환경에서 쉽게 변조되거나 오염물질로 채워져 있어 전기적 측정에
2024-11-18열 에너지를 전기로 전환시키는 열전 소자는 버려지는 폐열을 활용할 수 있어 지속 가능하고 친환경적인 에너지 플랫폼으로 주목받고 있다. 한국 연구진이 우수한 신축성과 최고 수준 성능을 보이는 열전소자를 개발하여 웨어러블 소자를 위한 체온을 이용한 차세대 에너지 공급원으로의 가능성을 한층 더 앞당겼다. 우리 대학 생명화학공학과 문홍철 교수팀이 POSTECH 화학공학과 박태호 교수팀과 공동연구를 통해 열역학적 평형 조절을 통한 기존 N형 열전갈바닉 소자*성능 한계 극복 기술을 구현했다고 14일 밝혔다. *열전갈바닉 소자: 생성되는 전자 흐름의 방향에 따라 N형과 P형으로 구분 가능 네거티브(negative)를 의미하는 N형은 전자가 저온에서 고온 쪽으로, 포지티브(positive)를 의미하는 P형은 고온에서 저온 쪽으로 전자가 이동 열전 소자의 성능을 최대한 끌어올리기 위해 P형과 N형 소자의 통합이 필수적이다. 최근 우수한 성능을 지닌 P형 열전 소자에 대한 연구는 많이 진
2024-11-14탄소나노튜브*는 강철보다 강도가 높아 반도체, 센서, 화학, 군수산업 등 다양한 응용 분야에 활용된다. 하지만 실제 사용시 금속/세라믹 소재가 표면에 코팅되어야 한다. 한국 연구진이 탄소나노튜브의 표면을 균일하게 코팅할 수 있게 보조하는 나노전사인쇄 기반 패터닝 기술 개발에 성공했다. *탄소나노튜브(carbon nanotube; CNT): 다이아몬드의 주성분인 탄소들이 6각형 고리 형태로 연결되어 지름 1나노미터(1m의 10억분의 일)의 긴 대롱 모양을 하고 있는 것 우리 대학 기계공학과 박인규 교수, 김산하 교수가 고려대(총장 김동원) 세종캠퍼스 안준성 교수, 한국기계연구원(원장 류석현) 정준호 박사와 공동연구를 통해 `탄소나노튜브의 원자 침투성(atomic permeability) 향상을 위한 고정밀 나노패터닝 기술'을 개발했다고 8일 밝혔다. 고성능 반도체, 센서, 에너지 소자를 구현하기 위해서는 수직 성장된 탄소나노튜브 표면에 기능성 물질을 코팅하는 것이 필수적
2024-11-08