〈 니콜라이 츠베코프 박사 〉
우리 대학 EEWS 대학원 니콜라이 츠베코프(Nikolai Tsvetkov) 박사가 30배 증가된 성능과 긴 수명을 갖는 연료전지의 전극 소재를 개발했다.
이 기술은 이종원소로 알려진 페로브스카이트 산화물을 물리적으로 표면 처리하는 방법으로 이를 통해 소재의 전기적 특성 및 안정성을 향상시킬 수 있다.
니콜라이 박사는 지난 1월 EEWS 대학원 강정구 교수 연구실에 우수 해외 신진연구자로 참여했다. 이번 연구는 국제 과학 학술지 ‘네이처 머티리얼즈(Nature Materials)’ 6월 13일자 온라인 판에 게재됐다.
페로브스카이트 산화물은 최근 수 년 간 연료전지, 비휘발성 메모리, 이산화탄소의 광 변환 등 다양한 분야에 활용 가능한 소재로 연구됐다.
그러나 고온에서 수분과 공기에 노출되면 산화물 표면이 화학적으로 불안정해져 메모리, 연료 전지 등의 수명과 성능을 저하시키는 주요 원인이 됐다.
이러한 현상이 발생하는 이유는 페로브스카이트 산화물의 원소 중 스트론튬이 표면에서 산화물 절연막을 형성해 전자전달 및 산소교환반응을 방해하기 때문이다.
이를 방지하기 위해 금속 산화물 표면에 수 나노미터 수준으로 코팅하는 방법이 있지만 근본적인 문제 해결에는 한계가 있었다.
연구팀은 문제 해결을 위해 다양한 이종 원소를 이용해 표면에 존재하는 산소 원자결함을 선택적으로 제거하는 기술을 개발했다. 이를 통해 반응을 방해하는 표면의 절연층 형성을 억제하고 우수한 전기적, 촉매적 특성 및 반응속도를 갖는 소재를 개발했다.
연구팀은 촉매로서의 활성이 없는 것으로 알려진 하프늄을 사용해 기존 소재 대비 연료전지 전극의 성능을 30배 증가시켰고 소재의 안정성도 대폭 향상시켰다.
이 연구 결과는 기존에 알려지지 않은 새로운 현상으로서 그동안 연료전지 성능 향상의 가장 큰 걸림돌이었던 전극 표면에서의 산소환원반응의 원인을 이론적으로 규명했다는 의미를 갖는다. 또한 고체 산화물 연료전지의 안정성에 대한 해답을 제시했다.
니콜라이 박사는 “극소량의 이종원소 표면처리 기술을 이용해 연료전지를 비롯한 다양한 분야의 전기화학촉매가 될 것이다”며 “기존의 기술적 한계를 극복하는 핵심 기술로 널리 활용될 수 있을 것이다”고 말했다.
이번 연구는 미국항공우주국(NASA) ‘화성탐사 2020 프로젝트’의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 페로브스카이트 산화물 박막(좌)에 이종 원소의 도핑으로 표면의 산소 원자결함을 제어한 박막구조
그림2. 도핑된 이종 원소별 산소교환 성능 그래프
그린수소는 풍력, 태양광등 재생에너지를 이용하여 생산과정에서 이산화탄소 배출이 전혀 없는 궁극적인 청정 에너지원으로 각광을 받고 있다. 이러한 그린수소를 활용/생산하는 연료전지, 수전해 전지, 촉매 분야에 산소 이온성 고체전해질이 널리 사용되고 있다. 이러한 산소 이온 전도체들은 주로 700oC 이상의 고온에서 활용되는데 이 때문에 소자 내의 다른 요소들과의 바람직하지 않은 화학반응, 소재 응집, 열충격이 발생하거나 높은 유지비용이 요구되는 등의 문제가 발생하고 있다. 우리 대학 기계공학과 이강택 교수 연구팀이 미국 메릴랜드 대학 에릭 왁스만(Eric Wachsman) 교수 연구팀과 공동연구를 통해 기존 소재 대비 전도성이 140배 높은 산소 이온 전도성 고체전해질 개발에 성공했다고 22일 밝혔다. 개발된 신소재는 비스무트 산화물 기반으로 400oC에서 기존 지르코니아 소재의 700oC에 해당하는 높은 전도성을 보이며 중저온(600oC) 영역대에서 140배 이상 높은 이
2023-11-22연료전지는 부산물로 물 만을 배출하는 친환경적인 에너지 변환 장치로, 다양한 연료전지 중 양성자 교환막 연료전지(PEMFC)는 수송용 및 발전용 연료전지로 현재 상용화가 진행 중이다. 다만 연료전지의 촉매로 사용되는 백금 촉매는 자원의 희소성으로 인한 높은 가격 때문에 대량 생산 및 전 세계적인 보급에 문제점을 갖고 있었다. 우리 대학 생명화학공학과 이진우 교수 연구팀이 국민대학교 장세근 교수 연구팀, 서강대학교 백서인 교수 연구팀과 공동연구를 통해 비백금계 촉매 기반 고 전력밀도의 양성자 교환막 연료전지를 개발했다고 7일 밝혔다. 상대적으로 다른 비 백금계 촉매들에 비해 좋은 성능을 가진다고 알려져 백금을 대체하고 기존 연료전지 비용을 줄이기 위한 가장 유력한 후보 물질로 주목받아 온 M-N-C계 촉매는 PEMFC 연료전지에서 높은 전력밀도를 구현하는 데는 많은 한계가 있었다. 이진우 연구팀은 기존 백금 촉매를 대체할 수 있는 비 백금계 Fe-N-C 촉매의 높은 성능
2023-11-07미래 에너지원으로 주목받고 있는 수소 연료전지를 기존 귀금속 백금 소재 대비 1,000배 이상 저렴한 소재로 개발하여 화제다. 우리 대학 신소재공학과 조은애 교수 연구팀이 POSTECH 화학공학과 한정우 교수 연구팀과 공동연구를 통해 백금을 대체할 수 있는 비귀금속 촉매를 개발하고, 해당 소재의 고활성 메커니즘을 규명하는 데 성공했다고 22일 밝혔다. 수소차에 사용되는 양이온 교환막 연료전지(proton exchange membrane fuel cell, PEMFC)는 전극 촉매로 많은 양의 백금 촉매를 사용한다. 특히, 연료전지 공기극에서의 전기화학 반응은 속도가 매우 느려, 이를 높이기 위해 전극에 많은 양의 백금 촉매가 필요하다. 공동연구팀은 백금을 대체할 수 있는 공기극용 ‘단일 원자 철-질소-탄소-인 소재’를 개발하고, 활성 메커니즘을 규명했다고 밝혔다. 이 촉매는 상용제품에 적용되고 있는 양이온 교환막 연료전지(PEMFC) 뿐만 아니라
2023-08-23연료전지란 청정에너지원인 수소를 이용해 고효율로 전력을 생산하는 장치로, 다가오는 수소 사회에서 중요한 역할을 하는 기술로 여겨진다. 차세대 연료전지에 모두 적용 가능하고 기존에 비해 700시간 구동에도 끄떡없는 우수한 전극 소재가 개발되어 화제다. 우리 대학 신소재공학과 정우철, 기계공학과 이강택 교수와 홍익대학교 김준혁 교수 공동 연구팀이 산소 이온 및 프로톤 전도성 고체산화물 연료전지에 모두 적용 가능한 전극 소재 개발에 성공했다고 9일 밝혔다. 세라믹 연료전지는 전해질로 이동하는 이온의 종류에 따라 산소 이온 전도성 고체산화물 연료전지(SOFC)와 프로토닉 세라믹 연료전지(PCFC) 2가지로 나뉜다. 또한, 두 형태에 대해 모두 전력과 수소 간의 변환이 가능하므로 총 네 가지 소자로 구분될 수 있다. 해당 소자들은 수소전기차, 수소 충전소, 발전 시스템 등에 활용할 수 있는 탄소중립 사회를 위한 차세대 핵심 기술로 떠오르고 있다. 하지만, 이러한 소자들은 구동 온
2023-08-09우리 대학 기계공학과 이강택 교수 연구팀이 돼지 표피에서 추출한 젤라틴을 활용해 수백 나노 수준의 매우 얇은 고 치밀성 다중도핑 세라믹 박막 제조 기술을 적용한 고성능의 양방향 고체산화물 연료전지 개발에 성공했다고 8일 밝혔다. 양방향 고체산화물 연료전지(R-SOFC)는 하나의 연료전지 소자에서 수소 생산과 전력생산이 모두 가능한 시스템으로서 탄소중립 사회 실현을 위해 필수적인 에너지 변환장치다. 이러한 에너지 소자의 성능을 높이기 위해서는 700oC 이하의 중저온에서 고활성을 갖는 전극의 개발이 필수적이며, 이를 위해 코발트 기반 페로브스카이트 전극이 집중적으로 연구돼왔다. 하지만 이러한 코발트 기반 전극 소재는 범용으로 사용되는 지르코니아(ZrO2) 전해질과 고온에서 화학반응을 일으켜 성능을 저하하는 문제가 있다. 이를 해결하기 위해 전극과 전해질 사이에 세리아(CeO2) 기능층을 도입하는 연구가 진행돼왔지만, 세리아와 지르코니아 사이의 반응을 억제하기 위해서 공정
2022-12-08