< (왼쪽부터) 박종용 석사과정, 정학천 석박사통합과정, 박시온 석박사통합과정, 최신현 교수 >
우리 대학 전기및전자공학부 최신현 교수 연구팀이 뛰어난 안정성과 집적도가 높은 우리 뇌의 뉴런 세포의 동작을 모사하는 *고신뢰성 차세대 저항 변화 소자(멤리스터) 어레이를 개발했다고 7일 밝혔다.
☞ 멤리스터(Memristor): 입력에 따라 소자의 저항 상태가 바뀌는 소자. 입력 전압의 크기와 길이 등에 따라 소자 내부의 저항 값이 바뀌며 정보를 저장하거나 처리한다.
최 교수 연구팀은 기존 멤리스터의 불안정한 특성을 보이는 필라멘트 기반 방식에서 벗어나, 점진적인 산소 농도를 갖는 금속산화물을 이용해 안정적이고 신뢰성 높은 인공 뉴런 어레이를 발표하였다. 기존의 멤리스터 소자는 안정성이 낮고 응용에 사용하기 위한 어레이 형태로 제작하기 힘든 문제점이 있지만, 최 교수 연구팀이 개발한 소자는 뛰어난 안정성을 갖출 뿐만 아니라, 자가 정류 특성과 높은 수율을 갖춰 대용량 어레이 형태로 집적될 수 있다. 따라서 집적도가 높고 안정적인 뉴로모픽 시스템을 구현할 때 활발히 사용될 수 있을 것으로 기대된다.
전기및전자공학부 박시온, 정학천 석박사통합과정, 박종용 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월호에 출판됐다. (논문명 : Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing)
인간의 뉴런은 들어오는 신호의 크기와 주파수에 따라 스파이크를 내보내거나 내보내지 않는 방식으로 정보를 처리한다. 현대의 컴퓨터가 빅데이터를 처리하는데 많은 에너지를 소모하는 것과 다르게, 사람의 뇌는 매우 적은 에너지만으로도 많은 양의 데이터를 빠르게 처리할 수 있다. 이러한 이유로, 신경의 효율적인 신호전달 시스템을 모사하여 컴퓨팅에 사용하는 `뉴로모픽' 하드웨어 기술이 활발히 연구되고 있다. 멤리스터 소자는 고집적, 고효율로 뉴로모픽 컴퓨팅 시스템을 구현할 수 있는 차세대 소자로 주목받고 있다.
< 그림 1. 이번 연구에서 구현한 뉴로모픽 컴퓨팅 개념도 >
그러나 현존하는 멤리스터로 실용적인 대용량 인공신경망 컴퓨팅(Large-scale Neural Computing) 시스템을 구현하기에는 단위 소자의 신뢰성 및 수율의 문제가 있다. 기존의 멤리스터는 절연체 내부에서 필라멘트가 마치 번개와 같이 무작위적으로 생성되고 사라지며 동작하기 때문에 제어하기가 힘들어 낮은 신뢰성을 보이게 되며, 이로 인해 안정적인 뉴로모픽 시스템을 구현하는 데 한계점으로 지적되어 왔다.
최신현 교수 연구팀은 이러한 무작위적인 필라멘트 문제를 해결하기 위해 필라멘트 기반 저항 변화가 아닌, 산소 이온의 점진적인 이동을 이용해 저항 변화 소자를 구현함으로써 소자의 신뢰성 확보하였다. 또한 단위 소자를 통한 어레이 제작 기술을 확보하여, 400개의 고신뢰성 인공 뉴런 소자를 100% 수율의 크로스바 어레이 형태로 집적하는 데 성공했다.
연구팀은 제작한 고신뢰성 인공 뉴런 어레이 기반 뉴로모픽 시스템을 이용해 항균성 단백질(anti-microbial peptide) 아미노산 서열을 학습하고, 이를 바탕으로 새로운 항균성 단백질을 만들어내는 뉴로모픽 시스템을 구현하였다.
제1 저자인 박시온 석박통합과정 연구원은 "이번에 개발한 고신뢰성 인공 뉴런 소자는 안정적인 특성과 높은 수율을 바탕으로 차세대 멤리스터 기반 뉴로모픽 컴퓨팅 시스템 구현에 기여할 수 있을 것으로 기대되며, 개발된 인공 뉴런 소자를 이용해 촉각 등을 감지하는 로봇의 인공 신경계, 시계열 데이터를 처리하는 축적 컴퓨팅(reservoir computing) 등 다양한 응용을 가능케 하여 미래 전자공학의 기반이 될 것으로 기대한다ˮ라고 말했다.
한편 이번 연구는 삼성미래육성사업의 지원을 받아 수행됐다.
최근 인간의 뇌를 모방해 하드웨어 기반으로 인공지능 연산을 구현하는 뉴로모픽 컴퓨팅 기술이 최근 주목받고 있다. 뉴로모픽 컴퓨팅의 단위 소자로 활용되는 멤리스터(전도성 변화 소자)는 저전력, 고집적, 고효율 등의 장점이 있지만 멤리스터로 대용량 뉴로모픽 컴퓨팅 시스템을 구현하는데 불규칙한 소자 특성으로 인한 신뢰성 문제가 발견되었다. 우리 연구진이 뉴로모픽 컴퓨팅의 상용화를 앞당길 신뢰성 향상 기술을 개발하여 화제다. 우리 대학 전기및전자공학부 최신현 교수 연구팀이 한양대학교 연구진과의 공동 연구를 통해 차세대 메모리 소자의 신뢰성과 성능을 높일 수 있는 이종원자가 이온* 도핑 방법을 개발했다고 21일 밝혔다. * 이종원자가 이온(Aliovalent ion): 원래 존재하던 원자와 다른 원자가(공유 결합의 척도, valance)를 갖는 이온을 말함 공동연구팀은 기존 차세대 메모리 소자의 가장 큰 문제인 불규칙한 소자 특성 변화 문제를 개선하기 위해, 이종원자가 이온을
2024-06-21우리 연구진이 공정 비용이 낮고 초저전력 동작이 가능하여 기존의 메모리를 대체하거나 차세대 인공지능 하드웨어를 위한 뉴로모픽 컴퓨팅(Neuromorphic Computing) 구현에 사용될 메모리 소자를 개발하여 화제다. 전기및전자공학부 최신현 교수 연구팀이 디램 (DRAM) 및 낸드(NAND) 플래시 메모리를 대체할 수 있는 *초저전력 차세대 상변화 메모리 소자를 개발했다고 4일 밝혔다. ☞ 상변화 메모리(Phase Change Memory): 열을 사용하여 물질의 상태를 비정질과 결정질을 변경하여, 이를 통해 저항 상태를 변경함으로써 정보를 저장하거나 처리하는 메모리 소자. 기존 상변화 메모리는 값비싼 초미세 반도체 노광공정을 통해 제작하며 소모 전력이 높은 문제점이 있었다. 최 교수 연구팀은 상변화 물질을 전기적으로 극소 형성하는 방식을 통해 제작한 초저전력 상변화 메모리 소자로 값비싼 노광공정 없이도 매우 작은 나노미터(nm) 스케일의 상변화 필라멘트를 자체적
2024-04-04우리 연구진이 현재 반도체 산업체에서 사용되는 실리콘 소재 및 공정만을 사용해 초소형 진동 신경망을 구축하여 경계선 인식 기능을 구현했으며 난제 중 하나인 그래프 색칠 문제*를 해결했다. *그래프 색칠 문제: 그래프 이론에서 사용되는 용어로, 그래프의 각 정점에 서로 다른 색을 할당해야 하며, 이러한 색깔 구분 문제는 방송국 주파수가 겹쳐 난시청 지역이 발생하지 않도록 주파수를 할당하는 문제 등과도 유사해 다양하게 응용되고 있음 우리 대학 전기및전자공학부 최양규 교수 연구팀이 실리콘 바이리스터 소자로 생물학적 뉴런의 상호작용을 모방한 뉴로모픽 진동 신경망을 개발했다고 3일 밝혔다. 빅데이터 시대가 도래하면서 인공지능 기술이 예전과 비교할 수 없을 만큼 비약적으로 발전하고 있다. 인간의 뇌 기능을 모사하는 뉴로모픽 컴퓨팅 중 하나인 상호 간 결합된 진동 신경망(oscillatory neural network)은 뉴런의 상호작용을 모방한 인공 신경망이다. 진동 신경망은 기
2024-04-03최근 인간의 뇌를 모방한 뉴로모픽 반도체 소자 연구가 주목받고 있다. 이에서 더 나아가 최근에는 뇌를 넘어 첨단 센서와 휴머노이드 분야에 적용가능한 감각신경계 모사에 관한 연구가 활발하게 진행되고 있다. 우리 대학 신소재공학과 김경민 교수 연구팀이 새로운 메모리 소자인 멤리스터를 사용하여 통증자극 민감도 조절 기능을 갖는 뉴로모픽 통각수용체 소자를 최초로 구현했다고 15일 밝혔다. ※ 멤리스터(memristor): 메모리(memory)와 저항(resistor)의 합성어로, 전류의 흐름에 따라 저항이 변화하는 전자소자 감각신경계의 핵심적인 역할 중 하나는 유해한 자극을 감지해 위험한 상황을 회피하는 것이다. 특히 통각수용체는 자극이 민감도의 임계치를 넘으면 통증 신호를 발생하여 인체가 자극에서 회피할 수 있도록 한다. 이를 위해 통각수용체의 신호 전달에는 통증 신호를 전달하는 흥분성 신경전달물질(Excitatory Neurotransmitter)과 외부 자극에 대한
2023-11-15우리 대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다. ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발(2021년 Science Advances 게재)하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다. 전기및전자공학부 졸업생 한준규 박사, 전기및전자공학부 이정우 박사과정과 김예은 박사과정, 그리고 신소재공학과 김영빈 박사과정이 공동 제1저자로 참여한 이번 연구는 저명 국제 학술지 ‘Advanced Science’ 2023년 9월 온라인판에 출판됐다. (논문명 : 3D Neuromorphic Hardware with Single T
2023-09-21