< (왼쪽부터) KAIST 생명화학공학과 이도창 교수, 이상엽 특훈교수, 고성준 박사 >
우리 대학 생명화학공학과 이도창 교수, 이상엽 특훈교수, 박영신 연구교수 연구팀이 디스플레이 소재인 양자점(퀀텀닷)을 이용해 *질소 고정 박테리아의 암모니아 생산 효율을 대폭 늘렸다고 16일 밝혔다.
☞ 질소 고정(Nitrogen Fixation) : 공기 중 질소 기체 분자(N₂)를 암모니아(NH₃)를 비롯한 질소화합물로 전환하는 과정을 말한다.
이 교수 연구팀은 양자점에 의해 흡수된 빛 에너지가 박테리아의 암모니아 합성 반응에 사용되도록 설계했으며, 그 결과 박테리아의 암모니아 생산량을 큰 폭으로 증가시킬 수 있었다. 이를 위해 연구팀은 양자점을 질소고정 박테리아 안에 더 많이 넣을 수 있는 방법을 제시했다.
생명화학공학과 고성준 박사가 제1저자로 참여한 이번 연구의 결과는 국제 학술지 `미국 화학회지(JACS)'에 표지 논문으로 선정돼 출판됐다. (논문명 : Light-Driven Ammonia Production by Azotobacter vinelandii Cultured in Medium Containing Colloidal Quantum Dots).
질소 고정 박테리아는 질소 고정 효소를 이용해 대기 중 질소를 암모니아로 전환하여 생장에 필요한 단백질을 생산한다. 이러한 질소 고정 반응은 화학적 암모니아 합성법인 하버-보슈 공정에 비해 에너지 소비와 이산화탄소 배출이 현저하게 적다.
하지만, 박테리아는 생장에 필요한 만큼만 암모니아를 생산하도록 진화돼 질소 고정 효소의 반응이 느리기에 이를 산업적으로 활용하기 어렵다. 질소 고정 반응이 느린 이유는 효소의 두 가지 구성요소(전자 전달부, 촉매 반응부)의 비효율적인 상호작용 때문이다. 전자 전달부가 촉매 반응부에 전자를 공급한 후, 반드시 탈착돼야만 촉매 반응부가 새로운 전자를 추가로 공급받아 암모니아를 생성할 수 있다.
< 그림 1. 양자점-박테리아 복합 시스템 형성 및 빛을 이용한 암모니아 생성 반응 >
연구팀은 문제 해결을 위해 빛을 흡수하는 양자점을 박테리아의 질소 고정 반응에 전자 공급원으로 활용해 나노·바이오 복합 시스템을 구축했다. 양자점은 수 나노미터의 작은 크기를 갖는 반도체 나노입자이며 디스플레이 소재로 많이 알려진 물질이다. 하지만, 양자점이 흡수한 빛 에너지를 표면에 쉽게 전달할 수 있도록 입자의 구조 및 표면을 제어하면 광 감응 및 광 촉매 소재로도 우수한 특성을 보인다. 연구팀은 질소 고정 효소의 전자 전달부 역할을 양자점으로 대체하기 위해 양자점의 코어/쉘 구조를 전자 전달에 유리하게 설계했다. 또한, 양자점이 생물학적 시스템에 결합할 수 있도록 표면 화학 특성을 제어해 수(水)분산 특성을 확보했다.
연구팀은 구조 및 표면이 제어된 양자점을 질소 고정 박테리아의 대사활동이 가장 활발한 성장기에 추가해, 박테리아의 능동적인 양자점 흡수를 유도했다. 이렇게 제작된 양자점-박테리아 복합 시스템에 빛을 조사한 결과, 질소고정 반응 속도가 증가하며 암모니아 생산량이 대폭 증가함을 확인했다. 고성준 박사는 "디스플레이 소재와 미생물의 장점을 합해 빛 에너지를 이용한 새로운 방식의 암모니아 합성법을 제시한 결과ˮ라며 "이번 연구를 활용한 그린 암모니아 생산 플랫폼을 구축한다면, 환경 및 에너지 문제에 적극적으로 대응할 수 있을 것이다ˮ라고 말했다.
한편 이번 연구는 삼성미래기술육성사업의 지원을 받아 수행됐다.
< 그림 2. 논문 표지 이미지 >
현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다. 우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다. 유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. *단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함 이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테
2024-11-073차원 광학 나노구조체는 빛의 진폭, 위상, 편광 상태를 정밀하게 조작할 수 있어 포토닉스 분야에서 큰 관심을 받고 있다. 한국 연구진이 기존 기술로는 구현이 어려웠던 3차원 퀀텀닷 나노구조체를 정교하게 쌓아 올리는 적층 방식으로 구현하는 데 성공했다. 우리 대학 신소재공학과 정연식 교수, 전기및전자공학부 장민석 교수, 동국대학교 최민재 교수 공동 연구팀이 초미세 전사 프린팅 기반으로 3차원 퀀텀닷 구조 제작 기술을 개발했다고 27일 밝혔다. 연구팀이 개발한 이 기술은 대부분의 나노입자에 적용될 수 있어 범용성이 뛰어나고 우수한 패턴 품질을 제공할 수 있다. 또한, 프린팅 방식으로 대면적화가 가능해 고성능 소자 양산에 활용할 수 있는 장점을 가진다. 특히 편광 빛에 대한 선택적 반응을 보이는 구조적 비대칭성을 가진 대면적 카이랄 구조체를 구현해 기존 최고 기록인 19도* 대비 향상된 약 21도의 세계 최고 수준 **원편광 이색성(Circular dichroism) 성능
2024-09-28여러 친환경 고분자 중에서도 폴리하이드록시알카노에이트(이하 PHA)는 생분해성과 생체 적합성이 뛰어나 토양이나 해양 환경에서도 생분해되며, 식품 포장재나 의료용품 등에 사용되고 있다. 하지만 지금까지 생산된 천연 PHA(natural PHA)는 내구성, 열적 안정성 등 다양한 물성을 충족시키기 어렵고, 생산 농도가 낮아 상업적으로 활용하는 데 한계가 있었다. 우리 대학 연구진이 플라스틱으로 인한 환경오염 문제 해결에 중요한 기술을 개발해 화제다. 우리 대학 생명화학공학과 이영준 박사와 강민주 석사과정생을 포함한 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 `방향족 폴리에스터*를 고효율로 생산하는 미생물 균주 개발'에 성공했다고 26일 밝혔다. *방향족 폴리에스터: 방향족 화합물(벤젠과 같은 특별한 형태의 탄소 고리 구조)을 포함하고 에스터 결합을 가지고 있는 고분자 이번 연구에서는 대사공학을 이용해 대장균 내 방향족 단량체인 페닐 젖산(phenyllactate, P
2024-08-26우리 연구진이 미생물로 계란의 대체제를 개발하는 논문을 발표해서 화제다. 비동물성 원료를 활용한 계란 대체제 개발을 통해 온실가스 배출 및 폐기물 문제 등을 가져오는 공장식 축산의 문제를 해결하고 손쉽게 단백질 섭취가 가능한 지속가능한 식량 체계 구축에 기여할 수 있을 것으로 기대한다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘미생물 유래 친환경 액상 계란 대체물 개발’논문을 발표했다고 4일 밝혔다. 연구진은 미생물 용해물의 가열을 통해 형성된 젤이 삶은 계란과 유사한 미시적 구조와 물리적인 특성을 가지는 것을 확인하였고, 미생물 유래의 식용 효소나 식물성 재료를 첨가하여 다양한 식감을 구현할 수 있음을 밝혔다. 더 나아가, 액체 상태인 용해물을 이용하여 머랭 쿠키를 굽는 등, 미생물 용해물이 난액을 기능적으로 대체할 수 있음을 규명하였다. 현재까지 비동물성 단백질을 기반으로 한 계란 대체제 개발이 진행돼왔으나
2024-07-04가파른 인구 증가와 기후 변화로 인한 식량 생산성 저하로 인해 전 세계 식량 위기가 고조되고 있다. 더욱이 오늘날의 식량 생산 및 공급 시스템은 인류가 배출하는 총량의 30%에 달할 정도로 막대한 양의 이산화탄소를 배출하며 기후 변화를 가중시키고 있다. 이러한 난국을 타개할 열쇠로서 지속 가능하면서도 영양이 풍부한 미생물 식품이 주목받고 있다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘지속 가능한 원료로부터의 미생물 식품 생산’연구의 방향을 제시하는 논문을 게재했다고 12일 밝혔다. 미생물 식품은 미생물을 이용해 생산되는 각종 식품과 식품 원료를 가리킨다. 미생물의 바이오매스에는 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 양의 단백질을 함유하고 있으며, 각종 가축이나 어패류, 농작물과 비교해 단위 질량을 생산하는 데 가장 적은 양의 이산화탄소를 배출하고, 필요로 하는 물의 양과 토지 면적 또한 적기
2024-04-12