< 사진 1. (왼쪽부터) 전산학부 김민수 교수, GraphAI한동형 박사 >
우리 연구진이 오늘날 인공지능 딥러닝 모델들을 처리하기 위해 필수적으로 사용되는 기계학습 시스템을 세계 최고 수준의 성능으로 끌어올렸다.
우리 대학 전산학부 김민수 교수 연구팀이 딥러닝 모델을 비롯한 기계학습 모델을 학습하거나 추론하기 위해 필수적으로 사용되는 기계학습 시스템의 성능을 대폭 높일 수 있는 세계 최고 수준의 행렬 연산자 융합 기술(일명 FuseME)을 개발했다고 20일 밝혔다.
오늘날 광범위한 산업 분야들에서 사용되고 있는 딥러닝 모델들은 대부분 구글 텐서플로우(TensorFlow)나 IBM 시스템DS와 같은 기계학습 시스템을 이용해 처리되는데, 딥러닝 모델의 규모가 점점 더 커지고, 그 모델에 사용되는 데이터의 규모가 점점 더 커짐에 따라, 이들을 원활히 처리할 수 있는 고성능 기계학습 시스템에 대한 중요성도 점점 더 커지고 있다.
일반적으로 딥러닝 모델은 행렬 곱셈, 행렬 합, 행렬 집계 등의 많은 행렬 연산자들로 구성된 방향성 비순환 그래프(Directed Acyclic Graph; 이하 DAG) 형태의 질의 계획으로 표현돼 기계학습 시스템에 의해 처리된다. 모델과 데이터의 규모가 클 때는 일반적으로 DAG 질의 계획은 수많은 컴퓨터로 구성된 클러스터에서 처리된다. 클러스터의 사양에 비해 모델과 데이터의 규모가 커지면 처리에 실패하거나 시간이 오래 걸리는 근본적인 문제가 있었다.
지금까지는 더 큰 규모의 모델이나 데이터를 처리하기 위해 단순히 컴퓨터 클러스터의 규모를 증가시키는 방식을 주로 사용했다. 그러나, 김 교수팀은 DAG 질의 계획을 구성하는 각 행렬 연산자로부터 생성되는 일종의 `중간 데이터'를 메모리에 저장하거나 네트워크 통신을 통해 다른 컴퓨터로 전송하는 것이 문제의 원인임에 착안해, 중간 데이터를 저장하지 않거나 다른 컴퓨터로 전송하지 않도록 여러 행렬 연산자들을 하나의 연산자로 융합(fusion)하는 세계 최고 성능의 융합 기술인 FuseME(Fused Matrix Engine)을 개발해 문제를 해결했다.
< 그림 1. 연구 소개 그림 >
현재까지의 기계학습 시스템들은 낮은 수준의 연산자 융합 기술만을 사용하고 있었다. 가장 복잡한 행렬 연산자인 행렬 곱을 제외한 나머지 연산자들만 융합해 성능이 별로 개선되지 않거나, 전체 DAG 질의 계획을 단순히 하나의 연산자처럼 실행해 메모리 부족으로 처리에 실패하는 한계를 지니고 있었다.
김 교수팀이 개발한 FuseME 기술은 수십 개 이상의 행렬 연산자들로 구성되는 DAG 질의 계획에서 어떤 연산자들끼리 서로 융합하는 것이 더 우수한 성능을 내는지 비용 기반으로 판별해 그룹으로 묶고, 클러스터의 사양, 네트워크 통신 속도, 입력 데이터 크기 등을 모두 고려해 각 융합 연산자 그룹을 메모리 부족으로 처리에 실패하지 않으면서 이론적으로 최적 성능을 낼 수 있는 CFO(Cuboid-based Fused Operator)라 불리는 연산자로 융합함으로써 한계를 극복했다. 이때, 행렬 곱 연산자까지 포함해 연산자들을 융합하는 것이 핵심이다.
김민수 교수 연구팀은 FuseME 기술을 종래 최고 기술로 알려진 구글의 텐서플로우나 IBM의 시스템DS와 비교 평가한 결과, 딥러닝 모델의 처리 속도를 최대 8.8배 향상하고, 텐서플로우나 시스템DS가 처리할 수 없는 훨씬 더 큰 규모의 모델 및 데이터를 처리하는 데 성공함을 보였다. 또한, FuseME의 CFO 융합 연산자는 종래의 최고 수준 융합 연산자와 비교해 처리 속도를 최대 238배 향상시키고, 네트워크 통신 비용을 최대 64배 감소시키는 사실을 확인했다.
김 교수팀은 이미 지난 2019년에 초대규모 행렬 곱 연산에 대해 종래 세계 최고 기술이었던 IBM 시스템ML과 슈퍼컴퓨팅 분야의 스칼라팩(ScaLAPACK) 대비 성능과 처리 규모를 훨씬 향상시킨 DistME라는 기술을 개발해 데이터베이스 분야 최고 국제학술대회 중 하나인 ACM SIGMOD에서 발표한 바 있다. 이번 FuseME 기술은 연산자 융합이 가능하도록 DistME를 한층 더 발전시킨 것으로, 해당 분야를 세계 최고 수준의 기술력을 바탕으로 지속적으로 선도하는 쾌거를 보여준 것이다.
교신저자로 참여한 김민수 교수는 "연구팀이 개발한 새로운 기술은 딥러닝 등 기계학습 모델의 처리 규모와 성능을 획기적으로 높일 수 있어 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다.
이번 연구에는 김 교수의 제자이자 현재 GraphAI(그래파이) 스타트업의 공동 창업자인 한동형 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 16일 미국 필라델피아에서 열린 데이터베이스 분야 최고 국제학술대회 중 하나인 ACM SIGMOD에서 발표됐다. (논문명 : FuseME: Distributed Matrix Computation Engine based on Cuboid-based Fused Operator and Plan Generation).
한편, 이번 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
효과가 높은 신약 및 치료법 개발을 위한 단서가 제시됐다. 우리 대학 수리과학과 김재경 교수(기초과학연구원(IBS) 수리 및 계산 과학 연구단 의생명 수학 그룹 CI(Chief Investigator)) 연구팀은 인공지능(AI)을 이용해 동일 외부 자극에 개별 세포마다 반응하는 정도가 다른 ‘세포 간 이질성’의 근본적인 원인을 찾아내고, 이질성을 최소화할 수 있는 전략을 제시했다. 우리 몸속 세포는 약물, 삼투압 변화 등 다양한 외부 자극에 반응하는 신호 전달 체계(signaling pathway)가 있다. 신호 전달 체계는 세포가 외부 환경과 상호작용하며 생존하는 데 핵심적인 역할을 한다. 세포의 신호 전달 체계는 노벨생리의학상의 단골 주제일 정도로 중요하지만, 규명을 위해서는 수십 년에 걸친 연구가 필요하다. 신호 전달 체계는 세포 간 이질성에도 영향을 미친다. 세포 간 이질성은 똑같은 유전자를 가진 세포들이 동일 외부 자극에 다르게 반응하는 정도를
2024-01-17우리 대학 김재철AI대학원 박사과정 탁지훈 학생(지도교수 신진우)이 ‘2023 구글 PhD 펠로우’에 선정됐다. 구글 PhD 펠로우십은 컴퓨터 과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로 올해는 전 세계에서 67명이 선발됐다. 선정된 펠로우에게는 1만 달러의 장학금과 구글 각 분야 전문가 멘토와의 일대일 연구 토의, 피드백 등의 혜택이 주어진다. 탁지훈 학생은 기계학습(Machine Learning) 분야에서 메타학습(Meta-learning)과 뉴럴필드(Neural Field) 분야의 탁월한 연구 성과를 인정받아 선정되었다. 기계학습 분야에서는 총 19명의 학생이 선발되었으며 아시아 대학에서는 탁지훈 학생이 유일하다. 탁지훈 학생은 특히 기존 뉴럴필드 학습의 한계점들을 새로운 메타학습 방법론을 제안하여 효과적으로 극복한 것으로 평가받는다. 구체적으로는 뉴럴필드 학습에서의 세 가지 비효율적 요소인 학습
2023-10-31우리 대학 전산학부 홍승훈 교수가 이끄는 연구팀이 지난 5월 1일부터 5월 5일에 열린 기계학습 분야의 최우수 국제학술대회인 ‘표현 학습 국제 학회 2023(International Conference on Learning Representation, 이하 ICLR 2023)’에서 최우수논문상 (Outstanding Paper Award)를 수상했다고 5일 밝혔다. ICLR 2023은 인공지능 분야의 가장 권위 있는 학회 중 하나로서, 구글 스칼라 h-5 인덱스 기준 기계학습 분야의 1위에 올라있으며, 모든 과학 분야의 출판물 중 9위를 기록하고 있다. 올해 최우수논문상은 전체 1,574편의 논문 중 상위 4편에 주어졌다. 홍 교수팀의 ICLR 최우수논문상 수상은 한국인으로서는 최초이며, 주요 기계학습 학회에서 국내 기관이 주축이 되어 진행한 연구로 최우수논문상을 수상한 최초의 사례이기도 하다. 전산학부 김동균 박사과정(제1 저자), 김진우 박사과
2023-05-08강수량의 정확한 파악은 지구의 물 순환을 이해하고 수자원과 재해 대응을 위해 중요하다. 강수량 추정을 위한 알고리즘에는 다양한 방법들이 제안되어 왔으며, 최근에는 기계학습을 이용한 방법들이 많이 제안되고 있다. 우리 대학 문술미래전략대학원(건설및환경공학과 및 녹색성장지속가능대학원 겸임) 김형준 교수와 도쿄대 등으로 구성된 국제 공동연구팀이 인공위성에 탑재된 마이크로파 라디오미터의 관측값을 이용해 지상 강수량을 추정하는 새로운 기계학습 방법을 제안했다고 25일 밝혔다. 연구팀은 기존의 방법과 비교해 전 강수량에 대해 오차(RMSE)를 최소 15.9%에서 최대 42.5%까지 줄이는 데 성공했다. 단순한 데이터 주도(data-driven)모델은 대량의 훈련 데이터가 필요하고 물리적인 일관성이 보장되지 않으며 결과의 원인 분석이 어렵다는 등의 문제가 있었다. 연구팀은 이번 연구에서 위성 강수량 추정에 대한 분야 지식을 명시적으로 포함함으로써 학습 모델 내의 상호 의존적인 지식
2023-04-25우리 대학 뇌인지과학과 정재승 교수 연구팀이 인간의 뇌 신호를 해독해 장기간의 훈련 없이 생각만으로 로봇 팔을 원하는 방향으로 제어하는 뇌-기계 인터페이스 시스템을 개발했다고 24일 밝혔다. 서울의대 신경외과 정천기 교수 연구팀과 공동연구로 진행된 이번 연구에서 정 교수 연구팀은 뇌전증 환자를 대상으로 팔을 뻗는 동작을 상상할 때 관측되는 대뇌 피질 신호를 분석해 환자가 의도한 팔 움직임을 예측하는 팔 동작 방향 상상 뇌 신호 디코딩 기술을 개발했다. 이러한 디코딩 기술은 실제 움직임이나 복잡한 운동 상상이 필요하지 않기 때문에 운동장애를 겪는 환자가 장기간 훈련 없이도 자연스럽고 쉽게 로봇 팔을 제어할 수 있어 앞으로 다양한 의료기기에 폭넓게 적용되리라 기대된다. 바이오및뇌공학과 장상진 박사과정이 제1 저자로 참여한 이번 연구는 뇌공학 분야의 세계적인 국제 학술지 `저널 오브 뉴럴 엔지니어링 (Journal of Neural Engineering)' 9월 19권 5호에
2022-10-24