〈 김 형 수 교수 〉
우리 대학 기계공학과 김형수 교수 연구팀이 알코올과 물이 만날 때 발생하는 마랑고니 효과의 현상을 정량화하는 데 성공했다.
이 기술을 통해 계면활성제의 광범위한 사용을 억제하거나 유체 표면의 불순물들을 효과적으로 제거할 수 있는 원천기술이 될 것으로 기대된다.
이번 연구 결과는 미국 프린스턴 대학의 하워드 스톤(Howard Stone) 교수와 공동으로 진행됐고 국제 학술지 ‘네이처 피직스(Nature Physics)’ 7월 31자 온라인 판에 게재됐다.
마랑고니 효과는 계면을 따라 표면장력의 크기가 일정하지 않을 때 발생하는 현상을 말한다. 흔히 알려진 와인의 눈물 현상이 대표적인 마랑고니 효과이다.
물과 알코올처럼 서로 100% 섞이는 액체들은 만나는 즉시 혼합과 퍼짐이 동시에 이뤄지는 것처럼 보이지만 사실은 그렇지 않다. 실제 물의 표면장력은 알코올보다 3배 정도 큰데 이 표면장력 차이 때문에 두 액체가 닿는 순간 계면에서 마랑고니 효과가 발생한다. 이후 혼합이 일어나기까지는 일정 시간이 소요된다.
이와 같은 현상은 20세기 초반에 보고된 후 많은 논의가 됐지만 복잡한 물리화학적 혼합 현상을 정량화하는 데 한계가 있었다.
김 교수는 광학의 특성을 이용한 다양한 유동장 가시화(Flow visualization) 기법과 초고속 이미징 장비를 이용해 실험을 수행했다.
유동장 가시화는 물과 같은 투명한 액체가 얼마나 빠르게 흐르는지 파악하기 위해 입자를 띄워서 이들을 추적하거나 액체의 밀도차이 변화를 광학적 기법을 이용해 감지한 후 촬영하는 방식이다.
이를 통해 물과 알코올 사이에 발생하는 복잡한 물리화학적 현상의 정량화에 성공했고 이를 토대로 실험 결과를 예측하는 이론 모델도 개발했다.
이론 모델을 이용해 마랑고니 대류 유동 속도의 세기와 알코올 액적의 퍼지는 넓이, 유동장이 발달되는데 소요되는 시간을 예측할 수 있다. 이를 통해 실제 적용 상황과 조건에 맞춰 마랑고니 효과 유발 물질(알코올)의 종류와 액적의 크기를 설계할 수 있다.
연구팀은 이번 성과가 유체 계면을 2차 오염시키지 않고 계면에 따라 원하는 물질을 높은 효율로 쉽게 전달하거나 유체 표면의 불순물들을 효과적으로 제거할 수 있는 원천기술이 될 것으로 예상했다.
무엇보다 이번 연구 결과는 약물 전달을 위해 사용되는 계면활성제를 알코올이 대체할 수 있는 가능성을 보였다는 의의가 있다. 체내에 축적되는 특성을 갖는 계면활성제를 대체할 수 있다면 여러 부작용을 방지할 수 있을 것으로 기대된다.
김 교수는 “약물전달을 위해 계면활성제를 사용하는데 체내에 흡수되면 배출이 어려워 축적이 되고 천식환자에게 심장질환을 유발하는 등 여러 부작용이 발생한다.”며 “알코올과 같은 새로운 약물전달 물질을 사용해 이러한 부작용으로부터 자유로워지길 기대한다”고 말했다.
□ 사진 설명
사진1. 알콜 액적이 물 계면에 닿을 때 발생하는 마랑고니 유동(Marangoni flows)
사진2. 아지랑이(Schlieren) 가시화 기법을 이용한 알콜 종류에 따른 혼합 유동 비교 (왼쪽 메타놀, 오른쪽 아이소프로필 알코올)
사진3. 알콜 액적이 물 계면에 닿을 때 발생하는 마랑고니 혼합 유동(Marangoni mixing flow)의 측면 가시화 결과
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21우리 대학이 오는 22일(금) 오후 3시 국회의원회관 제6간담회실에서 ‘메타대전포럼 2024’를 개최한다고 19일 밝혔다. 이번 포럼은 조승래 국회의원실과 우리 대학 메타버스대학원, 한국전자통신연구원(이하 ETRI), 한국과학기술정보연구원(이하 KISTI)이 공동 주최하는 행사로 ‘뉴잼대전: 대전에서 새로운 (뉴욕의) 재미를, 세계에서 K-문화기술을!’ 비전을 구체화하고, 대전이 메타버스 중심지로 성장할 비전과 전략을 논의한다. 특히, <노잼대전>에서 <뉴잼대전>으로 탈바꿈하고 메타버스의 중심으로 성장할 수 있는 방안으로 뉴욕-대전 연결한 메타뮤지엄 구현, 개방형 산학연공동 메타버스연구소 설립, 그리고 대전을 넘어 대구-광주 등과의 지역 연대 등을 주요 의제로 다룰 예정이다. 메타버스대학원은 ‘뉴잼대전’ 비전의 일환으로 국내외의 뮤지엄을 연동할 <메타뮤지엄> 계획을 소개한다.
2024-11-19현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다. 우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다. 유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. *단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함 이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테
2024-11-07인공지능과 고성능 과학계산 간의 밀접한 관련성은 최근 2024년도 노벨 물리학상과 화학상이 동시에 수상된 것을 보면 알 수 있다. 우리 연구진이 인공지능을 활용하여 3차원 공간에 분포하는 원자 수준의 화학결합 정보를 예측하여 양자역학적 고성능 컴퓨터 시뮬레이션의 계산 시간을 획기적으로 단축하는데 성공했다. 우리 대학 전기및전자공학부 김용훈 교수팀이 물질의 특성을 도출하기 위해 슈퍼컴퓨터를 활용해 수행되는 원자 수준 양자역학적 계산에 필요한 복잡한 알고리즘을 우회하는 3차원 컴퓨터 비전 인공신경망 기반 계산 방법론을 세계 최초로 개발했다고 30일 밝혔다. 슈퍼컴퓨터를 활용한 양자역학적 밀도범함수론(density functional theory, DFT)* 계산은 빠르면서도 정확하게 양자 물성을 예측할 수 있게 해 첨단 소재 및 약물 설계를 포함한 광범위한 연구·개발 분야에서 표준적인 도구로 자리 잡아 필수 불가결한 역할을 하고 있다. *밀도범함수론(DFT):
2024-10-30우리 대학 전산학부 박종세 교수 연구팀이 지난 9월 15일부터 9월 17일까지 캐나다 밴쿠버에서 열린 ‘2024 IEEE 국제 워크로드 특성화 심포지엄(IEEE International Symposium on Workload Characterization, 이하 IISWC 2024)’에서 최우수 논문상(Best Paper Award)과 최우수 연구 기록물 상(Distinguished Artifact Award)’을 동시에 수상했다고 26일 밝혔다. 박 교수 연구팀은 ‘초거대 언어모델 추론 서비스 제공을 위한 HW/SW 공동 시뮬레이션 인프라(LLMServingSim: A HW/SW Co-Simulation Infrastructure for LLM Inference Serving at Scale)’ 논문으로 두 상을 동시에 수상했다. IISWC는 컴퓨터 시스템 워크로드 특성화 분야에서 권위를 자랑하는 국제 학회이며, 개
2024-10-11