< (왼쪽부터) 생명화학공학과 박현규 교수, 신소재공학과 정연식 교수, 신소재공학과 남태원 박사, 생명화학공학과 박연경 박사 >
우리 대학 생명화학공학과 박현규 교수, 신소재공학과 정연식 교수 공동 연구팀이 암 관련 마이크로RNA를 다중 검출할 수 있는 다색 양자점(퀀텀닷) 어레이를 개발했다고 20일 밝혔다.
신소재공학과 남태원 박사와 생명화학공학과 박연경 박사가 공동 제1 저자로 참여한 이번 연구는 미국화학회(American Chemical Society)가 발행하는 국제 학술지 `ACS 나노(ACS Nano)'에 2022년도 6월 15일 字 온라인판에 게재됐다. (논문명: Polychromatic quantum dot array to compose a community signal ensemble for multiplexed miRNA detection)
마이크로RNA는 18~25개의 염기서열로 이루어진 짧은 RNA로, 유전자 발현을 조절함으로써 세포 성장 및 분화와 같은 다양한 세포 활동을 제어한다. 마이크로RNA의 비정상적인 발현은 암을 포함한 다양한 질병과 밀접하게 연관돼있어, 여러 가지 질병을 진단하는 차세대 바이오마커로 크게 주목을 받고 있다.
마이크로RNA를 검출하는 가장 일반적인 기존의 방법은 역전사 중합효소 연쇄반응(qRT-PCR)이다. 하지만 이 기술은 역전사 반응을 수반하기 때문에 정량의 정확도가 떨어지고 다중 분석이 제한된다. 다중 핵산 분석에 특화되어 개발된 마이크로 어레이 기술 또한 여전히 역전사 단계를 수반하고 있으며 민감도와 특이도에 있어서 한계가 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해서, 트랜스퍼 프린팅 기법을 활용해 초고해상도의 다색 양자점 어레이(이하 PQDA)를 제작했고 이를 마이크로RNA를 분석하는 기술로 발전시켰다. 그 결과 연구팀은 표적 마이크로RNA를 높은 민감도와 특이도로 다중 검출하는 데 성공하였다.
PQDA는 표적 마이크로RNA에 상보적인 DNA프로브/양자점 복합체가 고정된 고분자 패턴으로, 이중가닥 특이적 뉴클레아제(이하 DSN) 효소에 의해서 표적 마이크로RNA에 특이적인 양자점을 방출하도록 설계됐다. 연구팀은 방출된 양자점들의 형광 신호 앙상블을 기반으로 유방암에 관련된 세 종류의 마이크로RNA를 펨토(10-15) 몰 수준으로 검출하는 데 성공했다. 또한, 혈청과 유방암세포로부터 마이크로RNA를 검출함으로써 기술의 임상 활용도를 입증했다.
< 그림 1. 마이크로RNA 다중 검출을 위한 다색 양자점 어레이 모식도 >
PQDA는 각각 독립적인 정량화가 가능한 DNA프로브-양자점 모듈로 이뤄져 있다는 점에서 다중 분석에 적합하다. 특히, PQDA 기반 검출은 역전사 단계 없이 원상태의 마이크로RNA에서 수행하기 때문에 정확한 정량 분석이 가능하고, DSN 효소를 활용해 별도의 증폭 절차 없이 높은 감도를 달성했다. 또한, DSN 효소의 우수한 표적 식별 능력을 이용해 매우 높은 특이도로 표적 마이크로RNA를 검출할 수 있었다.
연구팀 관계자는 "특히 마이크로RNA는 혈액, 타액 및 소변과 같은 체액에도 존재하기 때문에 액체생검(Liquid biopsy)을 위한 핵심 바이오마커로 작용할 수 있다ˮ며 "따라서 이번 기술은 암의 조기 진단, 치료 방향 결정, 치료 효과 모니터링 등을 위한 액체생검 기술로 널리 활용될 수 있을 것으로 기대된다ˮ고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단의 기초연구사업, 글로벌프론티어사업, 중견연구자지원사업의 일환으로 수행됐다.
3차원 광학 나노구조체는 빛의 진폭, 위상, 편광 상태를 정밀하게 조작할 수 있어 포토닉스 분야에서 큰 관심을 받고 있다. 한국 연구진이 기존 기술로는 구현이 어려웠던 3차원 퀀텀닷 나노구조체를 정교하게 쌓아 올리는 적층 방식으로 구현하는 데 성공했다. 우리 대학 신소재공학과 정연식 교수, 전기및전자공학부 장민석 교수, 동국대학교 최민재 교수 공동 연구팀이 초미세 전사 프린팅 기반으로 3차원 퀀텀닷 구조 제작 기술을 개발했다고 27일 밝혔다. 연구팀이 개발한 이 기술은 대부분의 나노입자에 적용될 수 있어 범용성이 뛰어나고 우수한 패턴 품질을 제공할 수 있다. 또한, 프린팅 방식으로 대면적화가 가능해 고성능 소자 양산에 활용할 수 있는 장점을 가진다. 특히 편광 빛에 대한 선택적 반응을 보이는 구조적 비대칭성을 가진 대면적 카이랄 구조체를 구현해 기존 최고 기록인 19도* 대비 향상된 약 21도의 세계 최고 수준 **원편광 이색성(Circular dichroism) 성능
2024-09-28디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다. 그러나 InP 양자점은 외부 환경에
2023-09-26양자정보통신 기술에 필수적인 양자광원을 구현하기 위한 플랫폼으로 반도체 양자점이 주목받고 있는데, 양자점을 이용하면 빛의 최소 알갱이인 광자를 정확히 원하는 시점에 하나씩 발생하는 단일광자 발생기를 만들 수 있기 때문이다. 다만, 양자점과 광학적 특성이 꼭 들어맞는 공진기 구조를 정밀하게 설계하고 결합해야만 발광 성능이 우수한 단일광자 발생기를 만들 수 있다. 우리 대학 물리학과 조용훈 교수 연구팀이 한국전자통신연구원(ETRI) 고영호 박사 연구팀과 한국과학기술연구원(KIST) 송진동 박사 연구팀과의 공동연구를 통해, 고성능의 단일 양자점 양자광원을 고밀도 양자점 기판 위에서 식각과 같은 파괴적인 공정없이 맞춤형으로 다량 만들 수 있는 원천 기술을 개발했다고 18일 밝혔다. 공동 연구팀은 우선 고밀도 양자점 중에서 단 하나의 양자점을 선별해 내는 비파괴적인 선택 방법을 고안하고, 이렇게 선택된 양자점의 광학적 특성을 분석하여 그 특성과 꼭 들어맞는 맞춤형 공진기를 양자점
2023-04-18우리 대학 생명화학공학과 이도창 교수, 이상엽 특훈교수, 박영신 연구교수 연구팀이 디스플레이 소재인 양자점(퀀텀닷)을 이용해 *질소 고정 박테리아의 암모니아 생산 효율을 대폭 늘렸다고 16일 밝혔다. ☞ 질소 고정(Nitrogen Fixation) : 공기 중 질소 기체 분자(N₂)를 암모니아(NH₃)를 비롯한 질소화합물로 전환하는 과정을 말한다. 이 교수 연구팀은 양자점에 의해 흡수된 빛 에너지가 박테리아의 암모니아 합성 반응에 사용되도록 설계했으며, 그 결과 박테리아의 암모니아 생산량을 큰 폭으로 증가시킬 수 있었다. 이를 위해 연구팀은 양자점을 질소고정 박테리아 안에 더 많이 넣을 수 있는 방법을 제시했다. 생명화학공학과 고성준 박사가 제1저자로 참여한 이번 연구의 결과는 국제 학술지 `미국 화학회지(JACS)'에 표지 논문으로 선정돼 출판됐다. (논문명 : Light-Driven Ammonia Production by Azotobacter vinelandii Cu
2022-06-16우리 대학 의과학대학원 이지민 교수 연구팀이 한국과학기술연구원(KIST) 오승자 선임연구원, 강원대학교 이주용 교수와 공동 연구를 통해 질병 세포에서만 핵 내 유전자 교정을 수행할 수 있는 유전자 가위 시스템(CRISPR/Cas9)을 개발했다고 14일 밝혔다. 연구팀은 세포 내 마이크로RNA가 특정 서열을 인식해 절단한다는 특성을 활용해, 질병 세포에서 과발현되는 마이크로RNA에 의해 특이적으로 절단될 수 있는 링커를 연결한 유전자 가위 시스템을 설계했다. 이렇게 설계된 시스템은 질병 세포 특이적 마이크로RNA가 적은 정상세포에서는 세포질에 머물러 유전자 교정을 수행하지 않지만, 질병 세포에서는 링커가 절단되면서 유전자 가위가 세포핵으로 들어가 유전자 교정을 수행할 수 있다. 이러한 플랫폼은 유전자 가위를 질병 세포에서만 기능 할 수 있게 해 정상세포와 질병 세포가 혼합돼있는 실제 환자에게도 효과적인 유전자 교정 치료를 진행할 수 있을 것으로 기대된다. KIST 신철희
2022-06-14