< 최성율 교수, 남윤용 박사과정, 장병철 박사과정 >
우리 대학 전기및전자공학부 최성율 교수와 신소재공학과 박상희 교수 공동 연구팀이 메모리와 레지스터의 합성어인 멤리스터(Memristor)를 이용해 저전력 비휘발성 로직-인-메모리 집적회로를 개발했다.
레지스터, 커패시터, 인덕터에 이어 4번째 전자 회로 소자인 멤리스터를 통한 기술로 새로운 컴퓨팅 아키텍처(하드웨어와 소프트웨어를 포함한 컴퓨터 시스템 전체 설계방식)를 제공할 수 있을 것으로 기대된다.
장병철, 남윤용 박사과정이 공동 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 10일자 표지 논문으로 게재됐다.
4차 산업혁명 시대는 사물인터넷, 인공지능 등의 정보통신 기술 기반을 통해 발전되고 있으며 이는 사용자 친화적인 유연, 웨어러블 기기를 활용해 제공될 것으로 보여진다.
이러한 측면에서 저전력 배터리를 기반으로 한 소프트 전자기기의 개발에 대한 필요성이 커지고 있다.
하지만 기존 트랜지스터로 구성된 메모리와 로직회로 기반의 전자 시스템은 문턱전압 이하 수준의 트랜지스터 누설 전류(subthreshold leakage current)에 의한 대기전력 소모로 인해 휴대용 전자기기로의 응용에 한계가 있었다. 또한 기존 메모리와 프로세서가 분리돼 있어 데이터를 주고받는 과정에서 전력과 시간이 소모되는 문제점도 있었다.
연구팀은 문제 해결을 위해 정보의 저장과 로직 연산 기능을 동시에 구현할 수 있는 로직-인-메모리 집적회로를 개발했다.
플라스틱 기판 위에 비휘발성의 고분자 소재를 이용한 멤리스터, 산화물 반도체 소재를 이용한 유연 쇼트키 다이오드 선택소자(Schottky Diode Selector)를 수직으로 집적해 선택소자와 멤리스터가 일대일로 짝을 이루는 1S-1M 집적소자 어레이를 구현했다.
연구팀은 기존의 아키텍처와는 달리 대기 전력을 거의 소모하지 않는 비휘발성 로직-인-메모리 집적회로를 구현해 새로운 컴퓨팅 아키텍처를 개발했다. 또한 어레이 상에서 소자 간에 흐르는 스니크(sneak) 전류라고 불리는 누설 전류 문제도 해결했다.
그 밖에도 연구팀의 기술은 병렬 컴퓨터 방식인 하나의 명령어로 여러 값을 동시에 계산하는 단일 명령 다중 데이터 처리(Single-Instruction Multiple-Data, SIMD)를 구현했다.
최 교수는 “멤리스터와 선택소자의 집적을 통해 유연한 로직-인-메모리 집적회로를 구현한 이번 연구는 유연성과 저전력성을 가진 메모리와 로직을 동시에 제공한다”며 “모바일 및 웨어러블 전자시스템의 혁신을 가져 올 수 있는 원천기술을 확보했다는 의의를 갖는다”고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 글로벌프론티어사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 저널에 게재된 표지논문 사진
그림2 유연 멤리스티브 비휘발성 로직-인-메모리 회로와 소자 단면 고해상도 투과전자현미경 이미지
그림3. 비휘발성 메모리 소자 응용을 위한 인가전압에 따른 소자 성능 확인
그림4. 유연 1S-1M 집적 소자 어레이의 병렬 로직 연산
최근 인간의 뇌를 모방해 하드웨어 기반으로 인공지능 연산을 구현하는 뉴로모픽 컴퓨팅 기술이 최근 주목받고 있다. 뉴로모픽 컴퓨팅의 단위 소자로 활용되는 멤리스터(전도성 변화 소자)는 저전력, 고집적, 고효율 등의 장점이 있지만 멤리스터로 대용량 뉴로모픽 컴퓨팅 시스템을 구현하는데 불규칙한 소자 특성으로 인한 신뢰성 문제가 발견되었다. 우리 연구진이 뉴로모픽 컴퓨팅의 상용화를 앞당길 신뢰성 향상 기술을 개발하여 화제다. 우리 대학 전기및전자공학부 최신현 교수 연구팀이 한양대학교 연구진과의 공동 연구를 통해 차세대 메모리 소자의 신뢰성과 성능을 높일 수 있는 이종원자가 이온* 도핑 방법을 개발했다고 21일 밝혔다. * 이종원자가 이온(Aliovalent ion): 원래 존재하던 원자와 다른 원자가(공유 결합의 척도, valance)를 갖는 이온을 말함 공동연구팀은 기존 차세대 메모리 소자의 가장 큰 문제인 불규칙한 소자 특성 변화 문제를 개선하기 위해, 이종원자가 이온을
2024-06-21우리 대학 신소재공학과 김경민 교수 연구팀이 다양한 멤리스터* 소자를 이용한 설명 가능한 인공지능 (XAI) 시스템을 구현하는데 성공했다고 25일 밝혔다. *멤리스터 (Memristor): 메모리 (Memory)와 저항 (Resistor)의 합성어로, 입력 신호에 따라 소자의 저항 상태가 변하는 소자 최근 인공지능 (AI) 기술의 급속한 발전이 다양한 분야에서 성과를 이루고 있다. 이미지 인식, 음성 인식, 자연어 처리 등에서 AI의 적용 범위가 확대되며 우리의 일상생활에 깊숙이 자리 잡고 있다. AI는 인간의 뉴런 구조를 모방해 만든 ‘인공신경망’을 기반으로, 적게는 수백만 개에서 많게는 수조 개에 달하는 매개변수를 통해 데이터를 분석하고 의사 결정을 내린다. 그러나 이 많은 매개변수로 인해 AI 모델의 동작 원리를 정확하게 이해하기 어렵고, 이는 통상적으로 블랙박스에 비유되곤 한다. AI가 어떤 기준으로 결정을 내는지 알 수 없다면, AI에 결함이나
2024-03-25곤충의 시신경계를 모방하여 초고속, 저전력 동작이 가능한 신개념 ‘지능형 센서’ 반도체의 개발로 다양한 혁신적 기술로 확장가능한 기술이 개발되었다. 이 기술은 교통, 안전, 보안 시스템 등 다양한 분야에 응용되어 산업과 사회에 기여할 것으로 보인다. 우리 대학 신소재공학과 김경민 교수 연구팀이 다양한 멤리스터* 소자를 융합해 곤충의 시신경에서의 시각 지능*을 모사하는 지능형 동작인식 소자를 개발하는데 성공했다고 19일 밝혔다. *멤리스터 (Memristor): 메모리(Memory)와 저항(Resistor)의 합성어로, 입력 신호에 따라 소자의 저항 상태가 변하는 전자소자. *시각 지능 (Visual Intelligence): 시신경 내에서 시각 정보를 해석하고 연산을 수행하는 기능. 최근 인공지능(AI) 기술의 발전과 함께, 비전 시스템은 이미지 인식, 객체 탐지 및 동작 분석과 같은 다양한 작업에서 AI를 활용해 핵심적인 역할을 수행하고 있다.
2024-02-19전기및전자공학부 박시온 연구원, 정학천 연구원, 박종용 연구원 및 최신현 교수는 점진적 산소 농도를 갖는 금속산화물 층을 활용하여 우리 뇌의 뉴런 세포의 동작을 모사하는 고 신뢰성 차세대 저항 변화 소자(멤리스터) 어레이를 개발 하였으며, 올해 Nature Communications에 출판됐다. 위 연구는 최근 Nature Communications의 Editor's highlight 논문에 선정됨에 이어, Featured Image로 선정되어 홈페이지 메인을 장식했다. 관련 링크 : https://www.nature.com/ncomms/ 또한 본 연구는 2022 가을 KAIST 공과대학 breakthrough 연구성과로 소개된 바 있다. (논문명 : Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing) 이번 연구
2022-10-31우리 대학 전기및전자공학부 최신현 교수 연구팀이 다공성 구조를 갖는 *차세대 저항 변화 소자(멤리스터)를 활용해 우리 뇌의 신경전달물질 시냅스를 모방한 고신뢰성 소자(시냅스 소자)를 개발했다고 25일 밝혔다. ☞ 멤리스터(Memristor): 메모리와 레지스터의 합성으로 이전의 상태를 모두 기억하는 메모리 소자. 전원공급이 끊어졌을 때도 직전에 통과한 전류의 방향과 양을 기억한다. 최 교수 연구팀은 기존 양이온 저항 변화 방식과 음이온 저항 변화 방식을 혼합한 하이브리드 형태로 매개체를 구성해, 비정질로 이루어진 다공성 구조 및 버퍼 층을 이용해 고신뢰성 시냅스 소자를 설계했다. 해당 구조는 저온 공정을 통해 형성함으로써 기존 실리콘 상보형 산화금속 반도체(CMOS)에 집적 및 적층 가능해 집적도 높은 대용량 로직/인공신경망 컴퓨팅 시스템 제작에 활발히 응용될 수 있을 것으로 기대된다. 우리 대학 최상현 연구원과 박시온 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학
2022-01-25