〈 박 병 국 교수, 김 갑 진 교수 〉
우리 대학 신소재공학과 박병국 교수와 물리학과 김갑진 교수 연구팀이 자성메모리(Magnetic Random Access Memory, MRAM) 구동의 핵심인 스핀전류를 효율적으로 생성하는 새로운 소재를 개발했다.
이번 연구는 ‘네이처 머티리얼즈(Nature Materials)’ 3월 19일자 온라인 판에 게재됐다.
이 연구는 고려대 이경진 교수, 미국국립표준연구소(NIST)의 Mark Stiles 박사 연구팀 등과 공동으로 수행됐다.
자성메모리는 외부 전원 공급이 없는 상태에서 정보를 유지할 수 있고 집적도가 높으며 고속 동작이 가능해 차세대 메모리로 주목받고 있다.
자성메모리의 동작은 스핀전류를 자성소재에 주입해 발생하는 스핀토크로 이뤄지기 때문에 스핀전류의 생성 효율이 자성메모리의 소모 전력을 결정하는 핵심 기술이다.
이번 연구에서는 강자성-전이금속 이중층이라는 새로운 소재 구조에서 스핀전류를 효과적으로 생성할 수 있음을 이론 및 실험을 통해 규명했다. 특히 이 구조는 기존 기술과 달리 생성된 스핀전류의 스핀 방향을 임의로 제어할 수 있다.
이 소재를 차세대 메모리로 주목받는 스핀궤도토크 기반 자성메모리에 적용하면 스핀토크 효율이 높아지고 외부자기장 없이 동작이 가능해 스핀궤도토크 자성메모리의 실용화를 앞당길 수 있을 것으로 기대된다.
스핀궤도토크 자성메모리는 고속 동작 및 비휘발성 특성으로 S램(D램에 대응하는 반도체 기억소자로 전원만 공급하면 기억된 정보가 계속 소멸하지 않는 램) 대비 대기전력을 획기적으로 감소시켜 모바일, 웨어러블, 사물인터넷용 메모리로 활용 가능하다.
이번 연구성과는 과학기술정보통신부 미래소재디스커버리사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 강자성-전이금속 이중층에서 스핀전류 생성 개략도
우리 대학 신소재공학과 박병국 교수팀이 물리학과 김갑진 교수 연구팀 및 현대자동차와 공동연구를 통해 자성메모리(Magnetic random-access memory, MRAM)를 기반으로 사람의 지문과 같이 매번 다른 패턴을 갖는 하드웨어 보안인증 원천 기술을 개발하는 데 성공했다고 30일 밝혔다. 박병국 교수 연구팀은 반강자성체-하부강자성체-비자성체-상부강자성체 다층박막 구조에서 무자기장(field-free) 스핀-궤도 토크(spin-orbit torque, SOT)로 동작하는 MRAM 소자의 스위칭 극성을 무작위적으로 분포시켜 물리적 복제 불가능성(physical unclonable function, 이하 PUF)을 지닌 보안소자를 개발하는 것이 가능함을 입증했다. 이 기술은 고온 및 고자기장 등의 환경에서도 높은 동작 신뢰도 및 무작위성을 유지하면서 작동 가능해 사물인터넷(IoT)을 비롯한 다양한 보안시스템에 응용될 수 있을 것으로 기대된다. PUF를 이용한 하드웨어
2022-12-02우리 대학 물리학과 이경진 교수가 최근 미국 물리학회(American Physical Society, APS) 2022년도 석학회원(Fellow)으로 선정됐다고 밝혔다. 석학회원은 미국 물리학회 전체 회원 (5만3000여명) 중 탁월한 학술 업적을 이룬 0.5% 이내의 석학급 회원들에게 주어진다. 2020년 우리 대학 석좌교수로 선정된 이 교수는 고체물리 스핀트로닉스 이론 분야에서 240여 편의 SCI 학술지 논문게재, 100여 회의 국내외 학회 초청 강연을 수행했다. 특히 전류에 의한 자화거동 원리를 규명하고 이를 산업적으로 응용하는데 이바지한 업적으로 석학회원으로 선정됐다. 국내 반도체기업에 의해 양산 중인 자성메모리(MRAM)의 핵심 구동원리인 스핀전류의 생성과 이에 의한 스핀토크의 원리를 규명하는 분야에 기여한이경진 교수는 이번 선정에 대해 “오랫동안 한 분야 연구에 집중해온 연구자로서 학문적 성취를 국제적으로 인정받았다는 점에서 개인적으로 영광으로 생각
2022-10-31우리 대학 신소재공학과 박병국 교수와 물리학과 이경진 교수 공동연구팀이 고속 동작 비휘발성 메모리로 개발 중인 스핀궤도토크 자성메모리(이하 SOT-MRAM)의 에너지 소비 전력을 획기적으로 감소시킬 스핀소재 기술을 개발했다고 27일 밝혔다. SOT-MRAM은 고속 동작 및 높은 안정성의 특성으로 차세대 자성메모리로 주목받고 있다. 하지만 이 기술은 자화 스위칭을 위해서 외부자기장의 인가가 필수적이고, 스위칭 전류가 기존의 스핀전달토크 자성메모리(STT-MRAM)보다 커서 자성메모리 동작 전력이 많이 소모되는 단점을 가지고 있다. 따라서 SOT-MRAM의 실용화를 위해서는 외부자기장 없이 동작하면서 스위칭 효율이 높은 소재 기술 개발이 요구되고 있다. 연구팀은 새로운 스핀소재 구조, 즉 단결정 강자성/전이금속 이중층 구조에서 세 방향의 스핀분극을 가진 스핀 전류가 생성됨을 이론 및 실험으로 밝히고, 이를 조합해 자성메모리의 동작 에너지를 결정하는 자화반전 스위칭 전류를 효과적으
2022-04-27우리 대학 신소재공학과 박병국 교수 연구팀이 차세대 비휘발성(Non-volatile) 메모리인 *스핀궤도토크 자성메모리(SOT-MRAM)의 스위칭 분극을 전기장 인가를 통해 임의로 제어하는 소재 기술을 개발했다고 21일 밝혔다. * 스핀궤도토크 자성메모리: 면방향 전류에서 발생하는 스핀전류를 이용해 자화 방향을 제어하는 동작 방식으로 기존의 스핀전달토크 자성메모리(STT-MRAM) 보다 동작 속도가 10배 이상 빠른 장점이 있다. 연구팀은 이 결과를 이용해 하나의 소자에서 다양한 논리연산이 가능함을 보임으로, 기억과 연산 기능을 동시에 수행하는 스마트 소자의 개발 가능성을 높였다. 특히 이 기술은 차세대 지능형 반도체로 개발되는 프로세싱-인-메모리 (PIM)에 적용할 수 있을 것으로 기대된다. PIM (processing-In-Memory) 기술은 메모리 공간에서 로직 기능을 수행해 프로세서에서 처리하는 데이터양을 획기적으로 줄임으로써, 기존 컴퓨팅 기술인 폰노이만 구조의
2021-12-21우리 대학 물리학과 조성재 교수 연구팀이 그래핀으로 자기장, 자성체 없이 스핀 전류를 생성, 검출하는 실험에 성공해 차세대 그래핀 스핀 트랜지스터 개발의 돌파구를 마련했다. 차세대 신소재로 주목받는 그래핀은 탄소 원자가 벌집 모양으로 이루어진 2차원 물질(원자만큼 얇은 물질)로서 전기전도성, 탄성, 안정성이 높아 ‘꿈의 나노 물질’이라고 불린다. 이 그래핀은 전자의 스핀 확산 거리가 길어, 전자스핀을 정보화하는 분야인 스핀트로닉스 응용에 큰 기대를 받아왔다. 하지만 그래핀은 전자의 스핀과 전자의 궤도가 상호작용하는 스핀-궤도 결합 에너지가 매우 약하다는 이유로 스핀 전류를 직접 생성하거나 검출할 수 없다는 한계가 있었다. 조성재 교수 연구팀은 그래핀에 스핀-궤도 결합이 매우 큰 전이금속이자 디칼코게나이드 물질인 2H-TaS2를 접합시켜서 그 인접효과로 그래핀의 스핀-궤도 결합을 100배 이상 증가시키는 데 성공했고 이어 ‘라쉬바 효과&rsqu
2020-05-18