- 비 표지방식에 의한 단백질 활성의 고감도 측정기술 개발
- 세포 내에서 단백질 수식(Post-translational modification) 및 신호전달 연구와 신약 후보 물질의 스크리닝 등 생명공학 분야에서 광범위하게 활용될 수 있는 기반 기술
우리 학교 생명과학과 김학성(金學成) 교수 / 김영필(金英必, 박사과정) 연구팀은 독일의 권위 있는 학술지인 안게반테 케미(Angewandte Chemie)誌에 이차이온 질량분석기를 이용한 단백질 활성 분석방법을 8월 1일자 인터넷 판에 발표했다. 이 연구는 한국표준과학연구원 나노바이오융합연구단 이태걸 박사팀과 공동으로 진행됐다.
생체 내에서 단백질의 수식(post-translational modification)에 관련된 다양한 단백질 및 효소는 세포내 신호전달에 핵심적인 역할을 담당하며 세포의 분열, 성장, 사멸과정을 정교하게 조절하고 있다.
단백질 키나제(protein kinase)는 단백질의 특정아미노산을 인산화 시켜 세포 내 다양한 신호전달 및 질병 메카니즘과 밀접하게 연관되어 있다. 따라서, 이러한 단백질의 수식에 관련된 단백질의 활성을 고감도로 정확하게 측정할 수 있는 방법은 세포내 신호전달 기작은 물론 신약개발에 광범위하게 활용될 수 있다.
최근에 개발된 백혈병 치료제인 글리벡은 세포의 증식 (proliferation)에 관련된 단백질 키나제의 활성 저해제다. 기존에는 주로 항체에 다양한 표지물질 (형광 혹은 효소)을 부착하여 측정하는 방법을 사용하였기 때문에 시간이 많이 소요되고 다양한 단백질 키나아제의 활성을 정확하고 빠르게 측정하기가 어려웠다.
金 교수팀은 금 나노입자(gold nanoparticle)와 이차이온 질량분석기 (secondary ion mass spectrometry)를 활용하여 고감도로 단백질 키나제의 활성을 측정하고 동시에 단백질 저해제를 분석할 수 있는 방법을 개발했다. 다양한 칩 표면에 금 나노입자를 부착하고 생체물질을 결합한 후 이온 빔을 조사하게 되면 생체물질의 질량신호를 얻을 수가 있다. 단백질 키나아제의 기질로서 사용되는 펩타이드의 질량신호가 금 나노입자에 의해 수 십배 증폭되는 점에 착안했다.
기존 질량분석기 중 매트릭스 보조된 레이저 탈착/이온화 질량분석기 (MALDI-MS)의 경우는 첨가된 매트릭스(matrix)의 불균일한 분포로 인해 정량분석에 큰 한계가 있었다.
연구팀에서는 매트릭스가 필요 없는 이차이온 질량분석기와 균일한 표면의 금 나노 입자층을 사용하여 신호를 증폭함으로써 고감도의 정량분석이 가능하게 했다. 이 측정방법은 다른 측정방법에 비해 표면 감도가 매우 우수하여 단위면적당(mm2) 수십 펨토몰(fmol) 수준의 생체물질을 검출할 수 있다.
또한 해상력이 뛰어나 표면 생체물질의 질량분포를 이미징을 통해 손쉽게 스크리닝 할 수 있다. 칩 표면에 서로 다른 기질을 사용할 경우 다양한 단백질 키나아제의 활성을 동시에 분석할 수 있음을 확인했다.
金 교수팀이 개발한 기술은 키나아제 이외에도 포스포타제 (phosphotase), 프로티아제 (protease), 아세틸라아제 (acetylase), 메틸전이효소 (methyltransferase) 등을 포함한 단백질 수식에 적용할 수 있기 때문에 생명과학 및 생명공학 분야에 다양하게 활용할 수 있다. 다양한 단백질 활성 저해제 (inhibitor)를 손쉽게 탐색할 수 있어 신약개발에 광범위하게 활용될 수 있을 것으로 기대된다. 현재 미국특허 출원 중이며 국내특허 등록을 완료했다.
< 용어 설명 >
비 표지방식 (label-free method) : 단백질 존재의 유무를 판별하기 위해서는 표지물질로서 단백질과 강하게 결합하는 항체에 흡광물질, 형광물질, 화학발광체 등의 표지자를 부착시킨 것을 사용하게 되는데 비 표지방식은 이와 같은 표지물질을 사용하지 않고 측정할 수 있는 것을 의미한다.
단백질 번역 후 수식과정 (post-translational modification): 합성된 단백질에 "기능"을 부여하는 과정이다. 즉, 세포 내에서 단백질이 합성 (번역과정이라고 함)된 이후 단백질의 특정 아미노산 부위에 인산기, 아세트산기, 메틸기, 혹은 탄수화물 등과 같은 다양한 기능기가 수식화 되는데 이는 단백질의 기능을 활성화하거나 억제하는 데 직접적으로 관여한다. 이 과정은 생체 내에 있는 다양한 효소에 의해 수행된다.
키나아제(kinase) : 다양한 단백질에 인산기를 붙여주는 효소로서 인체 내에는 약 500 종류 이상의 키나아제가 존재한다.
펨토몰 (fmol) : 1몰 (6.02x1023에 해당되는 분자수)의 10‒15에 해당되는 크기
지질 뗏목은 세포막 간 융합, 신호 전달, 바이러스 침투 등 세포 기능과 질병 발병의 핵심 과정에 중요한 역할을 한다. 한국 연구진이 지금까지 알려지지 않았던 지질 뗏목의 정렬 원인과 그 조절 메커니즘을 밝혀내어 세포막 간 상호작용을 조절하여 질병 치료에 새로운 접근법을 제공할 수 있을 것으로 기대된다. 우리 대학 바이오및뇌공학과 최명철 교수팀이 고등과학원(원장 최재경) 현창봉 교수팀, 포항가속기연구소(소장 강흥식) 이현휘 박사와 공동으로 세포막 간의 상호작용을 매개하는 지질 뗏목(Lipid Raft)의 정렬 현상의 원리를 최초로 규명했다고 5일 밝혔다. 세포 융합, 바이러스 침투, 세포 간 신호 전달 등 다양한 세포막 간의 상호작용을 조절할 수 있는 핵심 기전을 밝힌 것이다. 세포막(Cell membrane)은 세포의 내부와 외부를 구분하는 얇고 유연한 막으로, 지질 이중층(lipid bilayer)으로 구성돼 있다. 세포막에는 수많은 막단백질(membrane prote
2024-06-05최근 자연어나 이미지, 동영상, 음악 등 다양한 분야에서 주목받는 생성형 AI가 신약 설계 분야에서도 기존 신규성 문제를 극복하고 새로운 혁신을 일으키고 있다고 하는데 어떤 기술일까? 우리 대학 화학과 김우연 교수 연구팀이 단백질-분자 사이의 상호작용을 고려해 활성 데이터 없이도 타겟 단백질에 적합한 약물 설계 생성형 AI를 개발했다고 18일 밝혔다. 신규 약물을 발굴하기 위해서는 질병의 원인이 되는 타겟 단백질에 특이적으로 결합하는 분자를 찾는 것이 중요하다. 기존의 약물 설계 생성형 AI는 특정 단백질의 이미 알려진 활성 데이터를 학습에 활용하기 때문에 기존 약물과 유사한 약물을 설계하려는 경향이 있다. 이는 신규성이 중요한 신약 개발 분야에서 치명적인 약점으로 지적되어 왔다. 또한 사업성이 높은 계열 내 최초(First-in-class) 타겟 단백질에 대해서는 실험 데이터가 매우 적거나 전무한데, 이 경우 기존 방식의 생성형 AI를 활용하는 것이 불가능하다. 연구팀
2024-04-18신약 개발이나 재료과학과 같은 분야에서는 원하는 화학 특성 조건을 갖춘 물질을 발굴하는 것이 중요한 도전으로 부상하고 있다. 우리 대학 연구팀은 화학반응 예측이나 독성 예측, 그리고 화합물 구조 설계 등 다양한 문제를 동시에 풀면서 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 기술을 개발했다. 김재철AI대학원 예종철 교수 연구팀이 분자 데이터에 다중 모달리티 학습(multi-modal learning) 기술을 도입해, 분자 구조와 그 생화학적 특성을 동시에 생성하고 예측이 가능해 다양한 화학적 과제에 광범위하게 활용가능한 인공지능 기술을 개발했다고 25일 밝혔다. 심층신경망 기술을 통한 인공지능의 발달 이래 이러한 분자와 그 특성값 사이의 관계를 파악하려는 시도는 꾸준히 이루어져 왔다. 최근 비 지도 학습(unsupervised training)을 통한 사전학습 기법이 떠오르면서 분자 구조 자체로부터 화합물의 성질을 예측하는 인공지능 연구들이 제시되었으나 새로운 화합물의
2024-03-25우리 대학이 생성형 인공지능(generative AI)과 가상현실(VR)을 활용하여 초고속 생산성 시대를 열어가기 위한 본격적인 도전을 시작한다. 27일 대전 본원에 문을 연 'DRB-KAIST 스케치더퓨처 연구센터(센터장 배석형)'는 생성형 인공지능과 가상현실을 3D(3차원) 스케칭과 결합한 미래형 제품 개발 프로세스를 연구하기 위해 설립됐다. 로봇, 모빌리티, 인공 단백질과 같은 첨단 제조 산업 분야는 제품 개발 주기가 매우 길 뿐만 아니라, 설계 결함이 발견되면 다시 아이디어 발상 단계로 돌아가 실물 제작과 테스트까지의 모든 과정을 반복해야 한다. 또한, 복잡한 3차원 구조체가 한데 맞물려 움직이면서 고도의 기능을 수행하기 때문에, 기존 2차원 스크린 작업 환경에서는 설계 의도를 입력하거나 결과물을 해석하는 데 한계가 있었다.'DRB-KAIST 스케치더퓨처 연구센터'는 사람의 의도를 가장 빠르고 효과적으로 생성형 인공지능에 전달하는 수단으로 최신 가상현실 3D 스케
2024-02-29생명체는 DNA, RNA, 단백질과 같은 바이오분자들의 조절 작용으로 다양한 생물학적 기능을 수행한다. 바이오분자들의 조절로 유전 정보가 전달되고, 잘못 전달된 정보는 유전자 변형이나 감염성 질병의 원인이 된다. 따라서 분자생물학적 조절 연구는 유전자 치료제와 첨단 백신 개발에 중요하다. 특히, 2023년 코로나 mRNA 백신 기술을 개발한 과학자들이 노벨 생리의학상을 수상하면서 RNA 조절 연구에 기반한 첨단신약, 바이오공학 기술이 크게 주목받고 있다. 우리 대학 바이오및뇌공학과 이영석 교수 연구팀이 기초과학연구원(IBS) RNA 연구단 김빛내리 단장(서울대 생명과학부 석좌교수), 미국 국립암연구소 유진 발코프(Eugene Valkov) 박사팀과 공동연구를 통해 자체 개발한 단일핵산 분석법을 적용해 전령 RNA(messenger RNA, 이하 mRNA) 분해의 새로운 조절 기전을 찾았다고 밝혔다. mRNA는 긴 단일 가닥 RNA 분자로, DNA에 보관된 유전 정보를 단백질에
2024-02-28