- 반도체 실리콘 기판에 존재하는 나노스케일 결함의 해석 및 전산모사 기술 개발 -
우리학교 생명화학공학과 김도현 교수가 "NANO KOREA 2010" 심포지엄에서 반도체 실리콘 기판내의 나노스케일 결함 해석 기술로 "나노연구혁신부문 교육과학기술부 장관상"을 수상하였다.
김도현 교수는 반도체 회로의 미세화에 따라 나노스케일 결함에 대한 중요성이 커지는 시점에 이를 예측하고 해석할 수 있는 전산모사 기술을 개발한 연구 성과를 인정받았다.
김 교수팀은 원자단위의 해석 모델을 이용하여, 반도체용 실리콘 기판 내 수nm에서 수십nm까지의 결함을 해석하는 모델을 개발하였으며, 이를 통해 실리콘 단결정 성장 공정과 반도체 Fab 공정을 연계해서 기판 내의 결함을 해석할 수 있는 전산모사를 수행함으로써 실제 결함의 생성과 성장거동을 성공적으로 예측하였다.
[그림1] 결정성장시 생성되는 산소농도 차이에 의해 발생되는 Nano-void의 분포를 나타내었으며 이를 원자 모델을 이용해서 산소농도에 따른 Nano-void 형성를 예측한 결과
[그림2] 결정성장시 발생한 결함이 반도체 Fab 공정에서 oxygen precipitate로 성장하는 과정을 전산모사를 통해 나타낸 결과
[붙임] 용어 설명
반도체 회로 미세화 : 반도체의 Design rule로 Moore"s law에 의해 반도체의 회로 밀도가 18개월 주기로 2배로 늘어나게 된다. 이러한 밀도의 증가를 위해서는 회로 선폭의 감소와 함께 이에 따른 기판의 요구품질도 지속적으로 높아지게 된다.
결정성장 : 다결정 실리콘을 단결정 실리콘으로 성장시키는 방법으로서, 본 연구는 반도체용으로 많이 사용되고 있는 CZ법 (Czochralski)에 대한 연구다.
결함의 종류 : 결함의 종류에는 void성 결함과 precipitate성 결함이 존재한다. Void 성 결함은 vacancy간의 결합을 통해 형성되며, precipitate성 결함은 주로 oxygen과의 결합으로 발생한다.
결함의 영향 : 반도체 칩을 제작하는 중에 회로 설계 영역 즉 표면에서 수 nm까지의 영역에 결함이 존재하는 경우에는 oxidation 두께의 차이가 발생하여 반도체의 불량을 초래할 수 있다.
[그림3] 반도체 수율에 미치는 Grown-in 결함의 영향
전기자동차에서 볼 수 있는 고용량 배터리에 사용되고 있는 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 갖고 있으나, 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 배터리 수명에 악영향을 미치고 있다. 이를 해결하기 위해서 단일벽 탄소나노튜브를 소량 첨가해 수명 특성이 향상되는 결과를 얻었는데, 이런 향상이 어떻게 가능한지 나노스케일에서 영상화한 연구 결과가 공개됐다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해 배터리의 수명 특성 향상 메커니즘 영상화 결과를 국제학술지‘에이씨에스 에너지 레터스(ACS Energy Letters, Impact Factor: 22)’에 게재했다고 19일 밝혔다. (논문명: Spatially Uniform Lithiation Enabled by Single-Walled Carbon Nanotubes) 연구팀은 이전에는 실리콘 활물질이 충&midd
2023-09-19우리 대학 기계공학과 이정철 교수 연구팀이 현미경 사진을 이용해 나노 스케일 3D 표면을 예측하는 딥러닝 기반 방법론을 제시했다고 17일 밝혔다. 물리적 접촉 기반으로 나노 스케일의 표면 형상을 3D 측정하는 원자현미경은 웨이퍼 소자 검사 등 반도체 산업에서 사용되고 있다. 하지만, 원자현미경은 물리적으로 표면을 스캔하기 때문에 측정 속도*가 느리고, 고온 극한 환경에서는 작동할 수 없다는 단점을 지닌다. * 측정 속도를 높이기 위해 표면 스캔 방식의 효율을 개선해 20 FPS(초당 프레임 수) 수준의 비디오 프레임 원자현미경이 개발됐지만, 측정 가능한 표면의 면적이 100제곱마이크로미터(μm2) 수준으로 제한되며, 극한의 환경에서는 여전히 작동이 제한된다. 이에 연구팀은 비접촉 측정 방법인 광 현미경에서 딥러닝을 이용하여 원자현미경으로 얻어질 수 있는 나노 스케일 3D 표면을 예측했다. 비슷한 개념인 사진에서 깊이를 예측하는 기술은 자율주행을 위해 많이 연구되고
2023-01-17고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다. 하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케
2022-11-08리튬이온전지는 스마트폰과 전기차 그리고 드론을 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 기후변화와 코로나 팬데믹이 키워드가 되는 시대가 도래하면서 급증하는 수요에 대응하기 위해 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 이뤄지고 있지만, 기존의 전기화학 특성 평가 방법으로는 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기 어렵다. 따라서, 전기화학 특성에 대한 통합적인 이해를 위해 나노스케일 수준에서 리튬이온의 농도 및 전기전도도 분석 기술의 개발은 필수적이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 독일의 아헨공과대학교 플로리안 하우센(Florian Hausen) 교수와 독일 뮌스터 대학교 카린 클라이너(Karin Kleiner) 교수와 협업하여 고용량 리튬이온배터리를 충‧방전할 때 리튬이온이 움직이는 모습과 그로 인해서 전자들이 움직이는 전도 경로 그리고 격자들의 움직임을 원자간력 현미경
2022-04-29우리 대학 기계공학과 김형수 교수와 박광석 박사과정이 소금의 결정화 프로세스를 표면장력 효과로 제어해 나노 및 마이크로 캡슐을 제작하는 원천 기술을 개발했다고 5일 밝혔다. 이를 `결정 모세관 오리가미 기술(Crystal Capillary Origami Technology)'이라고 칭한다. 최근 나노물질 자가 조립기술은 기능성 고분자, 바이오 재료 분야 및 반도체 나노 구조체 제조 등에 활용되는 등 바이오기술(BT) 및 정보통신기술(IT) 분야와 서로 기술적으로 융합 발전되고 있어, 미래 산업에 미칠 경제적 효과가 막대할 것으로 예상되어 그 관심도가 높아지고 있다. 일반적인 자가 조립기술은 미리 정해진 기본 유닛을 이용하는 상향식 (bottom-up approach) 기술 방법이다. 보통 폴리머나 콜로이드 등을 이용해 최종 형태를 구성하게 되고, 이 기술은 분자 수준부터 마이크로미터 수준까지 폭넓은 길이 차원에 적용할 수 있다. 자가 조립기술을 이용하면 나노캡슐을 제작
2021-10-05