- 신중훈 교수팀, 유리구슬 이용해 ‘몰포나비’구조 과학적으로 구현 -
- 나노미터 수준에서 질서와 무질서 동시에 재현하는 데 성공 -
- 밝고 전력소모 적은 차세대 반사형 디스플레이 만들 수 있어 -
무지개, 공작새 등의 영롱한 색은 투명한 물질들의 주기적인 구조에 의해 반사와 간섭을 거치면서 만들어지는 ‘구조색’인데 구조색의 특징은 매우 밝고, 보는 각도에 따라 색이 바뀐다는 점이다.
반면 ‘몰포나비’는 밝은 구조 색을 가지면서도 다양한 각도에서 똑같은 푸른 빛깔을 낸다. 이는 질서와 무질서를 동시에 포함하는 몰포나비 날개의 독특한 구조 때문이다.
우리 학교 물리학과·나노과학기술대학원 신중훈 교수 연구팀이 몰포나비와 같이 무질서와 질서를 동시에 포함하는 구조를 유리구슬을 이용해 완벽하게 대형으로 재현하는 데 성공했다.
이번 연구 성과는 외부 빛을 반사시켜 화면을 출력하는 반사형 디스플레이를 구현할 수 있는 원천기술로, 밝으면서도 전력소모가 매우 적은 디스플레이를 만들 수 있을 것으로 기대되고 있다.
이와 함께 이 기술을 이용해 5만원권의 부분 노출 은선을 만들어 위조나 복제가 어려운 화폐를 만들 수 있고, 기존의 색소에 의한 색과는 다르게 번쩍거리는 느낌을 주기 때문에 핸드폰이나 지갑 등의 코팅재로도 각광받을 것으로 예상된다.
몰포나비의 날개 구조는 1μm(마이크로미터) 수준에서 관찰하면 주기적인 질서를 갖고 있는 것처럼 보이지만, 100nm(나노미터) 수준에서는 주기성을 상쇄시킬 수 있는 무질서함을 구조 속에 포함하고 있다. 그동안 학계에서는 나노미터 수준에서 질서와 무질서를 동시에 포함하는 구조를 완벽히 재현하는 데에는 아무도 성공하지 못했다.
반면 신 교수 연구팀은 이번 연구를 통해 다양한 크기를 갖는 수백 나노미터(nm) 크기의 유리구슬을 임의로 배열해 무질서함을 구현했고 또, 배열된 유리구슬 위에 반도체 증착 방법을 통해 주기적인 박막을 쌓아 넓은 면적의 몰포나비의 구조를 만드는 데 성공했다.
새롭게 개발된 박막은 몰포나비의 색과 밝기의 재현을 넘어 실제 몰포나비 보다도 각도에 따른 색의 변화가 훨씬 더 적은 우수한 성질을 지니고 있다.
연구진은 또 이 박막을 얇은 플라스틱 필름 안에 파묻음으로써 몰포나비보다 더 우수한 성질을 유지하면서도, 더욱 견고하고 종이처럼 접을 수 있는 신 개념 재료를 세계 최초로 구현해 냈다.
신중훈 교수는 “이번 연구 성과는 최근 각광받고 있는 생체모사 기술의 대표적 성공사례”라고 강조하고 “구조색을 이용하는 반사형 디스플레이 뿐 아니라 센서, 패션등 매우 다양한 분야에서도 응용될 수 있을 것”이라고 말했다.
이 결과는 재료분야 최고 권위 저널 중 하나인 어스밴스드 머터리얼스(Advanced Materials)지 온라인 판에 게재됐으며, 5월 8일자 내부 표지논문으로 게재될 예정이다. 지난 5월 3일에는 네이처(Nature)지에 주목받는 연구(Research Highlights)로 소개되기도 했다.
한편, 이번 연구는 KAIST 물리학과·나노과학기술대학원 신중훈 교수 (제1저자 정경재 박사과정 학생)와 서울대 전자과 박남규 교수, 그리고 삼성 종기원이 공동으로 수행했으며 한국연구재단과 교육과학기술부의 세계수준의 연구중심대학육성사업(WCU)의 지원을 받았다.
그림1. 몰포나비를 모방해 연구팀이 만든 박막. 다양한 색깔을 구현할 수 있다.
그림2. 몰포나비를 모방해 연구팀이 만든 박막. 플렉서블하면서도 크게 만들 수 있다.
우리 대학 기계공학과 경기욱 교수 연구팀이 다양한 3차원 형상으로 빠르게 변화하는 모핑 구동기를 개발했다. 현대 기술은 2차원 화면을 넘어 3차원 형상을 통해 정보를 전달하는 새로운 방식을 탐구하고 있다. 그러나 3차원 형상을 빠르게 표현하고 재구성하는 것은 도전적인 과제이다. 이에 대한 해답으로, 최근 연구팀은 전기 활성 고분자의 일종인 PVC 젤, 유전성 유체, 패턴화된 전극으로 구성된 새로운 모핑 구동기를 선보였다. 연구팀의 모핑 구동기는 전기유압식 구동(electrohydraulic actuation) 원리를 이용한다. 전극과 PVC 젤 복합체 사이에 전기장을 가하면 PVC 젤 복합체가 전극에 달라붙는 정전기적 지핑(electrostatic zipping)이 발생한다. 정전기적 지핑을 국부적으로 제어함으로써 유체의 흐름을 제어할 수 있으며, 이를 통해 다양한 형상을 표현할 수 있다. 연구팀이 개발한 모핑 구동기는 1.5 mm의 얇은 두께와, 7 g의 가벼운 무게
2024-09-30스트레처블 디스플레이는 공간 활용성, 디자인 자유도, 신체와 유사한 유연성 등의 장점으로 인해 차세대 디스플레이로 각광받고 있다. 한국 연구진이 25%까지 늘릴 수 있으며, 이미지 왜곡 없이 선명한 화질을 유지하고 15% 비율로 5,000회 늘렸다 펴도 성능이 안정적으로 유지되는 무변형(음의 푸아송비*) 스트레처블 디스플레이를 국내 최초로 개발해 화제다. *음의 푸아송 비 (Poisson’s ratio of -1): 가로 세로가 같은 비율로 늘어나는 비율로 음(-)의 값으로 표현. 일반적인 물질에서와 같이 가로로 늘릴 때 세로로 수축하는 것을 양(+)의 값으로 표현한다. 우리 대학 신소재공학과 배병수 교수(웨어러블 플랫폼 소재 기술센터장) 연구팀이 한국기계연구원(원장 류석현)과 공동연구를 통해, 신축 시 이미지 왜곡을 억제하는 전방향 신축성을 갖는 스트레처블 디스플레이용 기판 소재를 개발했다고 20일 밝혔다. 현재 스트레처블 디스플레이 기술은 대부분 신축성이
2024-09-20우리 연구진이 골프공의 표면처럼 반복적으로 파여 있는 구조를 도입해 실제 닿는 유효 면적을 줄임으로써 면과 면 사이의 점착력을 현저히 줄인다는 아이디어로, 잡아당겨도 성능을 유지하는 신개념 스트레처블 디스플레이를 개발해 화제다. 우리 대학 전기및전자공학부 유승협 교수 연구팀이 동아대 문한얼 교수, 한국전자통신연구원(ETRI) 실감소자 연구본부와의 협력을 통해 세계 최고 수준의 높은 초기 발광 면적비와 고신축성을 동시에 갖는 유기발광다이오드(organic light-emitting diode, OLED) 디스플레이를 구현하는 데 성공했다고 10일 밝혔다. 기존의 신축형 디스플레이에서는 성능과 신축성을 동시에 확보하기 위해, 발광하는 부분은 단단한 고립구조(rigid island)에 위치해 신축 시에도 기계적 변형 없이 우수한 성능을 보이도록 하고, 이들을 연결하는 커넥터 부분은 말굽 모양 등의 구부러진 형태로 구성해 신축에 따라 용이하게 변형할 수 있게 한다. 통상적으로
2024-09-10평면에 국한됐던 디스플레이 기술이 곡면형 모니터나 폴더블 휴대폰 화면처럼 다양한 형태로 진화되고 있는데, 이보다 더 나아가 잡아당겨도 동작 가능한 신축형 디스플레이의 핵심 기술이 개발되어 화제다. 우리 대학 전기및전자공학부 유승협 교수 연구팀이 동아대 문한얼 교수, 한국전자통신연구원(ETRI) 실감소자 연구본부와의 협력을 통해 세계 최고 수준의 높은 발광면적비를 가지며 신축 시에도 해상도가 거의 줄지 않는 신축 유기발광다이오드(organic light-emitting diode, OLED) 디스플레이를 구현하는 데 성공했다고 11일 밝혔다. 공동연구팀은 유연성이 매우 뛰어난 초박막 OLED를 개발하여 이의 일부 발광 면적을 인접한 두 고립 영역 사이로 숨겨 넣는 방법으로, 신축성과 높은 발광 밀도를 동시에 확보하는 데 성공했다. 이렇게 숨겨진 발광 영역은 신축 시 그 모습을 점차 드러내며 발광 면적비의 감소를 보상하는 메커니즘을 가능케 했다. 기존의 신축형 디스플레이는
2024-06-11스티로폼 입자들이 작은 눈보라를 만들었다가 관람객이 가까이 다가오면 순간적으로 큰 눈보라로 소용돌이쳤다. 마치 눈 내리는 공간에 있는 듯한 몰입적 경험을 할 수 있는 미디어아트 작품이 개발되어 화제다. 우리 대학 산업디자인학과 이우훈 교수 연구팀이 공기의 흐름을 제어해 스티로폼 알갱이의 집산(흩어짐과 모임)을 통해 그래픽 이미지를 표시하는 신개념 기계식 디스플레이‘스노우 디스플레이’를 개발했다고 14일 밝혔다. 연구팀이 개발한 디스플레이 시스템은 스티로폼 입자들을 수용하는 챔버(공간), 챔버 안에서 스티로폼 입자를 날려 흩트리는 부양 팬, 입자들을 흡착하여 거르는 검정색 메쉬 패브릭 스크린, 공기 통로 개폐장치, 배기 팬 등으로 구성된다. 부양 팬들을 작동시켜 스티로폼 입자의 흩어짐과 모임을 반복하며 원하는 그래픽 이미지를 표시한다. 무작위한 입자의 흩날림으로부터 일순 질서 있는 이미지가 생성되는 시각효과는 기존 대안 디스플레이에서는 보기 드문 마법
2023-09-14