- 가스 하이드레이트 생성 억제 물질인 메탄올의 새로운 역할 규명 -
- 원유, 천연가스 수송에서 타이탄 등 태양계 천체 연구까지 다양한 분야에 파급효과 기대 -
원유, 천연가스 등을 심해에서 끌어올릴 때 고압, 저온 조건에서 발생하는 가스 하이드레이트 때문에 송유관이 막힐 수 있다. 이를 방지하기 위해 주입하는 메탄올을 주입하는데 오히려 메탄올 때문에 가스 하이드레이트가 더욱 잘 발생한다는 기존의 가설을 뒤집는 연구결과가 나왔다.
우리 학교 해양시스템공학전공 서유택 교수와 신규철 박사가 공동으로 대표적인 가스 하이드레이트 생성 억제제인 메탄올이 조건에 따라 하이드레이트 형성의 촉매 역할을 하는 메커니즘을 규명했다.
연구 결과는 세계적 학술지 ‘미국 국립과학원 회보(PNAS, Proceedings of the National Academy of Sciences of the United States of America)’ 5월 21일자에 발표됐다.
가스 하이드레이트는 고압, 저온 조건에서 가스 분자가 물 분자와 결합해 얼음 형태로 존재하는 고체화합물로 원유와 천연가스의 이송 파이프라인 안에서 막히는 현상을 유발해 심각한 사고를 일으킬 수 있다.
이를 방지하기 위해 메탄올은 수송관 내 원유에 약 20~30% 만큼 주입해 가스 하이드레이트 생성을 억제하기 위해 사용된다.
연구팀은 원유를 생산할 때 메탄올에 사용되는 비용을 줄이기 위해 원유대비 메탄올의 주입 비율을 바꿔가며 가스 하이드레이트의 억제 효과를 알아보기 위해 저온 기상증착법 등 다양한 실험을 수행했다.
이번 연구는 메탄올이 가스 하이드레이트 형성을 억제한다는 기존의 연구결과를 기반으로 수행한 것이다. 그러나 메탄올이 메탄 등 다른 가스들과 함께 물과 결합해 가스 하이드레이트가 형성되는 것을 세계 최초로 밝혀냈다.
게다가 메탄올이 오히려 원유대비 5~20% 만큼 주입되면 가스 하이드레이트 형성 속도를 급격히 증가시켜 파이프 이송라인이 더욱 쉽게 막힐 수 있다는 사실도 함께 밝혀냈다.
실제로 2006년 멕시코 만에서 운영 중이던 유전에서는 메탄올 주입량이 20% 미만으로 떨어져 파이프라인이 막혔다. 수 일 동안 생산이 중단되어 회사는 수백만 달러 이상의 손실을 입었지만 과학적으로 원인을 밝혀내지는 못했다. 이렇게 원인이 밝혀지지 않았던 가스 하이드레이트 사고 사례에 대해서도 과학적으로 입증한 것으로 향후 산업계에 미치는 파급효과가 매우 클 것으로 기대된다.
서유택 교수는 “이번 결과는 원유, 천연가스 등의 이송 과정에서 기존의 가설을 뒤집는 결과로 얼음, 메탄, 메탄올, 암모니아 등이 공존하는 태양계 천체들의 표면 성분을 밝히는 데도 응용될 수 있다”며 “다양한 분야에 미치는 파급효과가 클 것으로 예상돼 이에 대한 후속 연구를 진행할 계획”이라고 밝혔다.
한편, 이번 연구는 해양시스템공학전공 서유택 교수와 신규철 연구원이 캐나다 정부출연연구기관(National Research Council)과 공동으로 수행했다.
그림1. 단결정 X-선 회절 분석을 통해 밝힌 하이드레이트 얼음 격자 안의 메탄올 분자 (右)
그림2. 심해 파이프라인에서 발생한 하이드레이트 막힘 현상
우리 대학 생명화학공학과 고동연 교수 연구팀이 새로운 미래지향적인 패러다임의 분리막 기반 원유정제 기술에 대한 Perspective 기사를 Science지에 게재했다. 글로벌 탄소중립을 달성을 위한 탈탄소화(Decarbonization)가 산업계의 화두인 현재 기존 석유화학 공정의 에너지 효율성을 높이고 탄소를 덜 배출할 수 있는 새로운 기술에 대한 요구가 크다. 즉, 원유를 끓는점 차이에 따라 정제하는 분별 증류 공정에 전 세계적으로 막대한 양의 에너지가 소비되기 때문에 이를 대체할 수 있는 기술이 필요한 실정이다. 최근 고동연 교수 연구팀을 포함해 전 세계의 연구팀들이 이와 같은 에너지-탄소 저감 문제를 해결할 수 있는 기술로 원유를 구성하는 분자를 크기와 모양에 따라 상온에서 연속적으로 분리막을 통해 분리할 수 있는 기술에 대해 연구하고 있다. 분리막 기술은 기존의 증류법보다 약 10배 정도 낮은 에너지를 소비하며 석유화학공정의 탄소배출량을 극적으로 줄일 수 있는 기술이
2022-06-03우리 대학 생명화학공학과 이재우 교수 연구팀이 고온, 저압 조건에서도 수소를 안정적으로 하이드레이트에 저장할 수 있는 기술을 개발했다. 연구팀의 기술은 천연가스를 열역학적 촉진제로 사용하는 방식으로 수소-천연가스 하이드레이트는 에너지 가스 저장에 크게 기여할 수 있을 것으로 기대된다. 안윤호 박사가 1 저자로 참여하고 생명화학공학과 이 흔 교수, 고동연 교수, GIST 지구환경공학부 박영준 교수팀과 공동으로 연구한 이번 연구 결과는 국제 학술지 ‘에너지 스토리지 머티리얼즈(Energy Storage Materials)’ 6월 6일 자 온라인판에 게재됐다. (논문명 : One-step formation of hydrogen clusters in clathrate hydrates stabilized via natural gas blending) 유럽 등에서는 대기 중 이산화탄소의 농도를 줄이기 위해 천연가스에 수소를 일부 혼합해 사용하는 대체
2019-06-17우리 대학 건설및환경공학과 권태혁 교수 연구팀이 일명 불타는 얼음으로 불리는 천연가스 하이드레이트가 바다 속 점토질 퇴적토에서 다량으로 생성되는 원리를 규명했다. 이번 연구는 점토 광물이 하이드레이트 생성을 촉진한다는 것을 실험적으로 규명하고 점토질 퇴적층에서 하이드레이트의 존재에 대한 새로운 원리를 제시했다는 의의를 갖는다. 박태형 박사과정이 1저자로 참여한 이번 연구는 환경 분야 국제 학술지 ‘인바이러멘탈 사이언스&테크놀로지(Environmental Science & Technology)’ 2월 3일자 온라인 판에 게재됐다. 해저의 퇴적토나 영구동토층(2년 이상의 기간 동안 토양이 얼어있는 지대)에서 주로 발견되는 천연가스 하이드레이트는 메탄 등의 천연가스가 물 분자로 이뤄진 얼음과 비슷한 결정구조에 갇혀있는 고체물질이다. 흔히 불타는 얼음으로 불리는 이 물질은 막대한 매장량으로 인해 차세대 대체 에너지로 주목받고 있다. 점토질 퇴적
2018-03-05그동안 전 세계적으로 석탄이나 석유를 능가하는 막대한 미래 에너지자원인 가스하이드레이트를 안정적으로 생산할 수 있는 방법을 찾으려고 심혈을 기울여 왔으나 뚜렷한 해답을 찾지 못하고 있다. 기존의 기술들이 지닌 한계성도 있지만, 해저 지층의 일부를 이루고 있는 가스하이드레이트 층의 붕괴로 인한 지반 침하 및 해저 생태계 파괴와 같은 엄청난 지구적 재앙과 피해를 극복할 획기적 기술이 아직 나오지 않고 있다. 우리 학교 생명화학공학과 이흔 교수팀은 해저에 묻혀 있는 가스하이드레이트 층을 거의 손상하지 않고 얼음 결정 형태로 이루어진 하이드레이트 구조에 갇혀있는 막대한 양의 천연가스를 회수하고, 대신 그 빈자리에 지상에서 주입된 공기나 공기와 혼합가스를 집어넣는 획기적인 개념을 수립했다. 연구팀은 다양한 조건의 가스하이드레이트 층에 해리와 맞교환이 동시에 일어나는 새로운 개념의 회수원리를 직접 적용해 자발적 천연가스 생산을 완벽히 입증했다. 이러한 공기 주입법은 이산화탄소 격리
2014-10-27우리 학교 생명화학공학과 이흔 교수가 국제가스하이드레이트학회(ICGH, International Conference on Gas Hydrates)에서 천연가스의 획기적 생산기술개발에 대한 공로를 인정받아 대상인 평생업적상 수상자로 선정됐다. 시상식은 올 7월 중국 북경에서 열리는 ICGH 총회에서 거행된다. 이 교수는 세계 최초로 이산화탄소와 질소를 가스하이드레이트층에 주입해 안정적으로 천연가스를 생산할 수 있는 맞교환 기술을 개발했다. 미국의 메이저 석유회사 코노코필립스(ConocoPhillips)는 2012년 4월 미국 알라스카 북부사면(North Slope) 가스하이드레이트층에 이 교수가 개발한 기술을 적용해 천연가스를 뽑아내는 시험생산에 성공했다. 한편, 이 교수는 이달의 과학기술자상, KAIST 학술대상, 경암상 등을 수상한 바 있다.
2014-03-18