< 사진 1. 이상엽 생명화학공학과 특훈교수 >
우리 대학 생명화학공학과 이상엽 특훈교수가 6월 11일~15일 싱가포르에서 개최 중인 제15차 국제 대사공학학회(International Metabolic Engineering Conference, 회장 MIT Kristala Prather교수)에서 현지 시각으로 6월 11일 개막 기조 강연 (opening plenary lecture)를 하였다고 밝혔다. 전 세계 28개국에서 671명의 전문가와 학생들이 참가하는 본 학술대회는 코로나로 인해 이번에 5년 만에 대면으로 개최되었으며 학술대회가 시작한 지 25년을 맞이하게 되었다.
이 교수는 ‘박테리아의 시스템 대사공학’을 주제로 한 기조 강연에서 석유화학산업으로 생산하던 다양한 화학물질들과 플라스틱, 그리고 식물 등으로부터 극소량만 추출 가능하던 천연물질들, 그리고 자연에 존재하지 않지만 인류의 건강과 편리를 위하여 요구되는 비천연물질들을 박테리아의 시스템 대사공학에 의해 효율적으로 생산하는 전략들과 예들을 소개하였다. 특히 5년 만에 역대 최다 인원이 참석한 학회에서 기술경제학적 분석으로 시작하여 생산균주개발과 발효공정 및 분리정제공정을 통합하여 해석하고 세포공장을 제작하는 시스템 대사공학의 창시자로서 뜻깊은 개막 기조 강연을 하였다.
< 사진 2. 국제대사공학회 개막기조강연 모습 >
최근 이 교수의 연구실에서 시스템 대사공학에 의해 개발한 나일론-5의 원료, 대체육의 핵심 원료인 헴(heme), 빨간 색소 칼민과 7가지 무지개 색소 등의 효율적인 생산에 대한 예를 들었다. 또한, 식물성 기름으로부터 생산되어온 바이오디젤을 대체할 포도당 등 바이오매스 유래 탄소원으로부터 직접 발효에 의해 지속가능하게 디젤과 항공유를 생산하는 대사공학 기술에 대하여도 발표했다. 끝으로, 데이터와 인공지능 기반 바이오공정 개발전략과 인공지능을 이용한 약 3,400만 가지 효소의 기능과 470만 가지 전사인자를 예측해 가상 세포 제작과 이를 응용하는 전략에 대하여도 강연해 호평을 받았다.
이상엽 특훈교수는 대사공학 분야의 세계적인 학자로서 시스템 대사공학을 창시하고 가장 많은 화학물질을 친환경 바이오 기반으로 생산하는 기술들을 개발한 공로로 이태리 대통령으로부터 애니(ENI)상, 이스라엘 총리로부터 삼손(Samson)상, 그리고 최근 덴마크의 노보자임(Novozymes)상 등을 수상한 바 있고, 미국국립학술원, 미국공학한림원, 영국왕립학회 이상 세계 3대 아카데미에 외국 회원으로는 동시에 선출된 전 세계 유일한 학자다.
한국 산업 부문이 2050년까지 탄소중립 목표를 달성하기 위해 철강, 화학, 시멘트 등 주요 산업에서 구체적인 탈탄소화 경로를 제시한 연구가 국제 학술 저널 Journal of Cleaner Production에 발표되었다. KAIST 지속가능 녹색성장대학원 엄지용 교수가 이끄는 국제 연구팀이 발표한 이번 연구는, 향후 2035년 국가 온실가스 감축 목표(NDC) 수립에 중요한 역할을 할 것으로 기대된다. 연구진은 Global Change Assessment Model (GCAM)[1]을 사용하여 한국 산업 부문의 온실가스 감축 전략을 분석했다. 이 연구는 철강과 화학, 시멘트 부문을 중심으로 산업별 탄소 배출 특성을 분석하고, 탄소 포집 및 저장(CCS) 기술[2]과 청정에너지 기반의 수소 기술을 활용해 어떻게 각 부문이 탄소중립을 달성할 수 있을지를 구체적으로 탐색했다. 이번 연구의 제1 저자인 이한주 씨는 "본 연구는 반도체 산업을 포함한 한국의 산업 세부 업종을 학계
2024-10-10지구 온난화 등의 심각한 환경 문제로 인해 화석 연료를 대체할 수 있는 친환경 기반 화학물질 생산 기술개발의 필요성이 지속적으로 증가하고 있다. 우리 연구진이 화학적인 공정이 아닌 시스템 대사공학을 활용, 플라스틱의 원료와 식품, 의약품 등의 합성에 사용되는 매우 중요한 산업 기반 화학물질인 숙신산을 세계 최고 수준으로 생산하는 데 성공해 화제다. 우리 대학 생명화학공학과 김지연 박사과정생과 이종언 박사를 포함한 이상엽 특훈교수 연구팀이 마그네슘(Mg2+) 수송 시스템을 최적화함으로써 고효율 숙신산 생산 균주를 개발했다고 11일 밝혔다. 이상엽 특훈교수 연구팀은 한우의 반추위에서 분리한 미생물인 ‘맨하이미아 (Mannheimia)’의 대사회로를 조작하고 마그네슘 수송 시스템을 최적화해 세계 최고 수준의 생산성을 갖는 숙신산 생산 기술을 개발했다. 연구팀은 미생물 발효 과정 중 pH 조절을 위해 사용되는 다양한 알칼리성 중화제가 숙신산 생산에 미치는
2024-09-11여러 친환경 고분자 중에서도 폴리하이드록시알카노에이트(이하 PHA)는 생분해성과 생체 적합성이 뛰어나 토양이나 해양 환경에서도 생분해되며, 식품 포장재나 의료용품 등에 사용되고 있다. 하지만 지금까지 생산된 천연 PHA(natural PHA)는 내구성, 열적 안정성 등 다양한 물성을 충족시키기 어렵고, 생산 농도가 낮아 상업적으로 활용하는 데 한계가 있었다. 우리 대학 연구진이 플라스틱으로 인한 환경오염 문제 해결에 중요한 기술을 개발해 화제다. 우리 대학 생명화학공학과 이영준 박사와 강민주 석사과정생을 포함한 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 `방향족 폴리에스터*를 고효율로 생산하는 미생물 균주 개발'에 성공했다고 26일 밝혔다. *방향족 폴리에스터: 방향족 화합물(벤젠과 같은 특별한 형태의 탄소 고리 구조)을 포함하고 에스터 결합을 가지고 있는 고분자 이번 연구에서는 대사공학을 이용해 대장균 내 방향족 단량체인 페닐 젖산(phenyllactate, P
2024-08-26우리 대학 박경렬 과학기술정책대학원 교수가 이달 8일부터 10일까지 뉴욕 UN 본부에서 열린 '제9차 UN 과학기술혁신포럼(UN Science, Technology and Innovation Forum for the Sustainable Development Goals)'에서 디지털기술을 통한 지속가능 발전 방안을 발표하고 후속 논의에 참여했다. 데니스 프랜시스(Dennis Francis) 유엔총회의장, 파울라 나르바에즈(Paula Narvaez) 경제사회이사회(UNECOSOC) 의장의 주재로 120여 개국의 장관 및 각국 대표, 300여명 이해당사 기관의 대표가 참석한 회의다.박경렬 교수는 연구개발혁신이 각각의 SDG 목표에 기여하는 방안을 체계화할 것을 주문하고 인공지능 포용성 교육의 중요성을 강조했다. SDG는 2015년 유엔총회에서 채택된 유엔 지속가능발전목표(Sustainable Development Goals: SDGs)로 글로벌 빈곤 종식과 지속가능발전을 위
2024-05-31가파른 인구 증가와 기후 변화로 인한 식량 생산성 저하로 인해 전 세계 식량 위기가 고조되고 있다. 더욱이 오늘날의 식량 생산 및 공급 시스템은 인류가 배출하는 총량의 30%에 달할 정도로 막대한 양의 이산화탄소를 배출하며 기후 변화를 가중시키고 있다. 이러한 난국을 타개할 열쇠로서 지속 가능하면서도 영양이 풍부한 미생물 식품이 주목받고 있다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘지속 가능한 원료로부터의 미생물 식품 생산’연구의 방향을 제시하는 논문을 게재했다고 12일 밝혔다. 미생물 식품은 미생물을 이용해 생산되는 각종 식품과 식품 원료를 가리킨다. 미생물의 바이오매스에는 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 양의 단백질을 함유하고 있으며, 각종 가축이나 어패류, 농작물과 비교해 단위 질량을 생산하는 데 가장 적은 양의 이산화탄소를 배출하고, 필요로 하는 물의 양과 토지 면적 또한 적기
2024-04-12