< 신소재공학과 김일두 교수 >
스마트 전자 기기 및 웨어러블 시장의 급속한 발전에 따라, 단순한 에너지저장 기능을 가진 이차전지를 넘어서 색깔이 변하는 스마트 이차전지 시스템이 주목받고 있다. 하지만 기존 전기변색소자는 낮은 전기전도도로 인해 전자와 이온의 이동효율 및 에너지 저장 용량이 낮고 플랙서블/웨어러블 에너지 기술에 적용하기 어려운 한계가 있었다.
우리 대학 신소재공학과 김일두 교수와 명지대학교(총장 유병진) 신소재공학과 윤태광 교수로 구성된 공동 연구팀이 전자와 이온의 이동효율을 높여주는‘파이(π) 결합 간격재(Spacer)’가 내장된 전기변색 고분자 양극재 개발을 통해, 충전․방전 과정을 시각화하는 스마트 전기변색-아연 이온 전지를 개발했다고 21일 밝혔다.
전기변색 기능이 접목된 전지는 충전과 방전 상태를 색 변화로 시각화하고, 태양광 흡수량을 조절해 실내 냉방 에너지 소비량을 절감하는 디스플레이 소자로 활용할 수 있는 획기적인 스마트 전지다. 공동연구팀은 장시간 공기 노출 및 기계적 변형에도 전기변색 성능과 우수한 전기화학 특성이 유지되는 유연 전기변색-스마트 아연 이온전지 구현에 성공했다.
< 그림 1. 충전시 남색 방전시 투명하게 바뀌는 고분자가 양극으로 이루어진 전기변색 아연이온전지 (Zn ion battery) >
공동 연구팀은 전자와 이온의 이동효율을 극대화하기 위해‘파이(π) 결합 간격재(Spacer)’가 내장된 고분자 양극재를 이론적인 모델링을 바탕으로 설계하고 최초로 합성했다. 파이(π) 결합은 구조 내 전자이동을 향상시켜 이온 이동 속도가 매우 빨라지고, 이온 흡착효율이 극대화되어 에너지 저장 용량 또한 높이는 효과가 있다.
‘파이(π) 결합 간격재(Spacer)’가 내장된 고분자 양극재 기반 전지는 간격재가 없는 경우와 비교했을 때 간격재가 공간을 마련해주어 이온 이동 속도를 빠르게 하여 고속충전이 가능하며 아연 이온 성능이 방전용량 110 mAh/g로 기존보다 40% 이상 저장용량도 확대되고 충·방전시 남색에서 투명색으로 빠르게 바뀌는 변색 성능도 30%가 상승한 결과를 나타냈다. 아울러 투명 유연전지 기술을 스마트 윈도우에 적용하면, 낮시간 동안 태양에너지를 흡수하는 과정에서 짙은 색을 띄게되어 자외선과 눈부신 태양빛을 차단하는 커튼 기능이 포함된 미래형 에너지 저장 기술로 쓰일수 있다.
< 그림 2. 파이(π) 결합 간격재 (Spacer)가 내장된 전기변색 고분자 구조 및 본 양극재를 활용한 스마트 유연전지의 작동 개념도 >
< 그림 3. (A) 밀도범함수(Density Functional Theory (DFT)) 이론 기반 원자 및 전자구조 분석. (B) 파이(π) 결합 간격재 (Spacer)가 내장된 고분자와 내장되지 않은 고분자에 대한 율속 특성 비교. (C) 기 보고된 아연이온전지와의 전기화학성능 비교 그래프. 파이(π) 결합 간격재 (Spacer)가 내장된 전자 공여-수용체 구조의 양극재는 기존의 아연이온 전지 및 전기변색 기기보다 우수한 전기화학성능 및 전기변색 특성을 보임 >
신소재공학과 김일두 교수는 ‘파이(π) 결합 간격재(Spacer)’가 내장된 고분자를 개발해 우수한 변색효율과 높은 에너지 용량의 스마트 아연이온전지 개발에 성공했다ˮ고 밝혔으며 "에너지 저장의 역할만을 수행하는 기존 전지의 개념을 넘어서, 스마트 전지 및 웨어러블 기술의 혁신을 가속화하는 미래형 에너지 저장 시스템으로 활용될 것을 기대한다ˮ 고 말했다.
이번 연구 결과는 윤태광 교수(KAIST 신소재공학과 졸업), 이지영 박사(現 노스웨스턴 대학교 박사 후 연구원), 충북대학교 신소재공학과 김한슬 교수가 공동 제1 저자로 참여하였으며, 국제 학술지 `어드밴스드 머티리얼즈 (Advanced Materials)' 에 인사이드 표지 논문(Inside Cover)으로 8월 3일 (35권, 31호)에 게재되었다. (논문명 : A π-Bridge Spacer Embedded Electron Donor–Acceptor Polymer for Flexible Electrochromic Zn-Ion Batteries)
< 그림 4. Advanced Materials Inside Cover (8월호) >
이번 연구는 과학기술정보통신부 나노소재기술개발사업, 한국연구재단 나노 및 소재 기술개발사업, 교육부 학문후속세대양성사업과 산업통산자원부의 알키미스트 프로젝트의 지원을 받아 수행됐다.
1회 충전에 500km 이상 운행할 수 있는 전기자동차를 실현하기 위해서는 고에너지밀도 전지가 필수적이다. 팩 단위*에서 고에너지 밀도가 확보 가능하다는 장점이 있는 리튬인산철 양극은 낮은 전자전도도를 가져 계면층을 형성하기 어렵다는 단점이 있다. KAIST 연구진이 리튬인산철 양극의 낮은 전자전도도를 개선한 전해질 첨가제를 개발하여 화제다. *팩단위: 현재 전기차용 배터리는 단일 전지(Cell)를 적층하여 배터리 관리시스템(BMS)과 냉각장치가 포함된 모듈(Module)을 구성하고, 이를 다시 모아 관리시스템으로 구성한 팩(Pack)으로 구성되어 있음 우리 대학 생명화학공학과 최남순 연구팀이 저비용 리튬인산철 양극과 흑연 음극으로 구성된 리튬이온 이차전지의 상온 및 고온 수명 횟수를 늘린 전해질 첨가제 기술을 개발했다고 16일 밝혔다. 기존 전해질 첨가제 연구는 주로 흑연 음극을 보호하기 위해 설계돼 높은 이온전도도를 가짐과 동시에 전해질 부반응이 억제되고 수지상 리튬
2024-05-16전기차 시대의 가속화에 따라 1회 충전에 긴 주행거리를 가능하게 하는 고용량, 고에너지밀도 이차전지 개발과 더불어 빠르게 충전을 할 수 있는 고속 충전 기술 개발의 중요도가 커지고 있다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 고전압 조건에서 리튬이온전지의 높은 효율과 에너지를 유지하고 고속 충전이 가능한 전해액 설계 기술을 개발했다고 6일 밝혔다. 개발된 전해액은 점도가 낮으면서 고전압에 안정적인 용매를 사용하였으며 안정적인 전극-전해질 계면 반응을 확보할 수 있는 첨가제 기술을 통해 리튬이온전지의 수명 특성을 획기적으로 향상시켰다. 최남순 교수 연구팀은 상용 리튬이온전지에 사용되고 있는 카보네이트 계열의 용매 대신 점도가 낮고 고전압 조건에서 안정적으로 작용할 수 있는 용매 조성 기술과 전극계면 보호 기술을 적용해 기존 연구 결과보다 현저하게 향상된 *가역 효율 (99.9% 이상)을 달성했다. ☞ 가역 효율 : 매 사이클마다 전지의 방전용량을 충전용량으로 나
2024-02-06전기차 시대의 가속화에 따라 1회 충전에 긴 주행거리를 가능하게 하거나 전 세계 평균 기온에 속하는 넓은 온도 범위(-20~60도)에서 충전과 방전을 할 수 있는 고용량, 고에너지밀도 이차전지 개발의 중요도가 커지고 있다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 넓은 온도 범위에서 리튬금속 전지의 높은 효율과 에너지를 유지하는 세계 최고 수준의 전해액 기술을 개발했다고 4일 밝혔다. 개발된 전해액은 기존에 보고되지 않은 새로운 *솔베이션 구조를 형성했으며 안정적인 전극-전해질 계면 반응을 확보할 수 있는 첨가제 기술을 통해 리튬금속 전지의 수명 특성을 획기적으로 향상시켰다. ☞ 솔베이션 구조 : 일반적으로 염(이온성 화합물) 농도가 낮은 전해액에서는 양이온이 전하를 띠지 않은 용매에 의해 둘러싸여 동심원의 껍질(Shell)을 형성하는데 이를 솔베이션 구조라고 함. 이러한 솔베이션 구조 개선 기술은 염 농도를 증가시키지 않고 배터리의 작동 온도 범위를 넓히는 매우 중요
2023-10-041회 충전에 500km 이상 운행할 수 있는 전기자동차를 실현하기 위해서는 고용량, 고에너지밀도 이차전지 개발이 필수적이다. 이에 높은 가역용량을 가지는 니켈리치 양극과 흑연보다 10배가량 높은 용량을 발현하는 실리콘 음극 물질이 차세대 리튬이온전지의 소재로 주목받고 있다. 하지만 기존 전해질 첨가제 연구는 기존 물질들의 스크리닝 기법을 통하여 시행착오를 거쳐 개발되기 때문에 시간과 비용이 많이 소모되어 신규 전극 소재에 대응하기 어려운 한계점을 보였다. 우리 대학 생명화학공학과 최남순 연구팀이 고려대 곽상규 교수팀, UNIST 홍성유 교수팀, 현대자동차, 한국화학연구원과 공동연구를 통해, 고용량 실리콘 기반 음극과 니켈리치 양극으로 구성된 리튬이온 이차전지의 상온 및 고온 장수명화를 가능하게 하는 전해질 첨가제 기술을 개발했다고 19일 밝혔다. 연구팀이 개발한 전해질 첨가제는 실리콘 기반 음극과 니켈 리치 양극의 저온, 상온 및 고온에서의 가역성을 증대시켜 배터리 충방전
2023-04-19리튬이차전지의 이상적인 음극 소재로 주목받는 리튬 금속은 현재 상용 배터리인 그라파이트(graphite, 372 mAh/g)보다 10배 높은 용량을 가지고 있지만, 충·방전 과정 중 리튬 덴드라이트(dendrite)라 불리는 바늘 구조의 침전물이 쉽게 형성되는 근본적인 문제로 인해 상용화되지 못하고 있다. 우리 대학 신소재공학과 김일두 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 리튬이온전지의 전해액 속에서 팽윤(고분자 화합물이 용매를 흡수해 부피가 늘어남)되는 초박형 공중합체 고분자 보호막을 적용해 리튬 금속 전지의 수명을 획기적으로 늘리는 데 성공했다고 28일 밝혔다. 리튬 금속의 낮은 쿨룽 효율, 짧은 전지 수명, 폭발 위험 등을 막기 위해 인공으로 고체-전해질 계면 (artificial solid-electrolyte interphase, 이하 SEI) 층을 보호막처럼 만들어 리튬 이온의 원활한 전달과 덴드라이트의 성장을 억제하기 위한 다양한 연
2023-03-28