< 김재철AI대학원 탁지훈 박사과정 >
우리 대학 김재철AI대학원 박사과정 탁지훈 학생(지도교수 신진우)이 ‘2023 구글 PhD 펠로우’에 선정됐다.
구글 PhD 펠로우십은 컴퓨터 과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로 올해는 전 세계에서 67명이 선발됐다. 선정된 펠로우에게는 1만 달러의 장학금과 구글 각 분야 전문가 멘토와의 일대일 연구 토의, 피드백 등의 혜택이 주어진다.
탁지훈 학생은 기계학습(Machine Learning) 분야에서 메타학습(Meta-learning)과 뉴럴필드(Neural Field) 분야의 탁월한 연구 성과를 인정받아 선정되었다. 기계학습 분야에서는 총 19명의 학생이 선발되었으며 아시아 대학에서는 탁지훈 학생이 유일하다.
탁지훈 학생은 특히 기존 뉴럴필드 학습의 한계점들을 새로운 메타학습 방법론을 제안하여 효과적으로 극복한 것으로 평가받는다. 구체적으로는 뉴럴필드 학습에서의 세 가지 비효율적 요소인 학습 시간, 학습 메모리 그리고 저장 공간을 효율적인 메타학습을 제안하여 효율화 하였으며, 이를 활용한 데이터 형태에 구애받지 않은 데이터 압축 기술 역시 제안하였다. 이러한 다양한 연구들은 NeurIPS, ICML, ICLR 등 기계학습 및 딥러닝 분야의 최고 학회에 다수 선정되었다. 또한 그는 구글 딥마인드 연구진들과 협력하여 메타학습과 뉴럴필드 연구를 수행한 바 있다.
< 탁지훈 박사과정 연구성과도: 대규모 뉴럴필드 학습을 위한 효율적 메타학습 방법론 >
시상식은 8월 29일부터 8월 30일 양일간 가상으로 열린 구글 PhD 펠로우십 서밋(Google PhD Fellowship Summit)에서 진행됐으며, 수상자 리스트는 구글 홈페이지에 게시되어있다.
구글은 KAIST 교수진과 학생을 대상으로 연구비 지원(Research Grant), 신진 연구자 지원(Research Scholar), 구글 클라우드 플랫폼 크레딧(GCP Credits), 익스플로어CSR(exploreCSR), PhD 펠로우십(PhD Fellowship), 학생 학회 후원(Student Travel Grants) 등 다양한 산학협력 프로그램으로 지원을 제공했다.
(홈페이지 주소 : https://research.google/outreach/phd-fellowship/recipients)
식물은 고착생활을 하면서 환경 스트레스에 대응하기 위해 진화적으로 다양하고 복잡한 천연물을 만들고 있다. 이 천연물들은 인류의 생존에도 필수적인 역할을 하고 있는데 미국식품의약국(FDA) 승인 저분자 약물의 30% 이상이 식물 천연물에 기초하고 있다는 사실이 이를 증명하고 있다. 한국 연구진이 딥러닝을 활용, 천연물의 역-생합성 경로를 예측하는 모델을 제시해 천연물 기반 의약품 대량 생산에 활용될 수 있도록 해 화제다. 우리 대학 생명과학과 김상규 교수 연구팀과 김재철AI대학원 황성주 교수 연구팀의 공동연구를 통해 천연물 생합성 경로를 예측하는 딥러닝 모델을 개발하고 부산대학교 박정빈 교수 연구팀과 협업을 통해 관심있는 누구나 모델을 활용할 수 있도록 인터넷 웹사이트(readretro.net)를 구축했다고 14일 밝혔다. 천연물 활용 및 대량 생산을 위해서는 생합성 경로를 밝히는 것이 필수적이다. 하지만 복잡한 구조를 가진 많은 약용 천연물의 생합성 경로가 잘 밝혀져 있지 않
2024-08-14인공지능 심층신경망 모델의 추천시스템에서 시간이 지남에 따라 사용자의 관심이 변하더라도 변화한 관심 또한 효과적으로 학습할 수 있는 인공지능 훈련 기술 개발이 요구되고 있다. 사용자의 관심이 급변하더라도 기존의 지식을 유지하며 새로운 지식을 축적하는 인공지능 연속 학습을 가능하게 하는 기술이 KAIST 연구진에 의해 개발됐다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 데이터 변화에 적응하며 새로운 지식을 학습함과 동시에 기존의 지식을 망각하지 않는 새로운 연속 학습(continual learning) 기술을 개발했다고 5일 밝혔다. 최근 연속 학습은 훈련 비용을 줄일 수 있도록 프롬프트(prompt) 기반 방식이 대세를 이루고 있다. 각 작업에 특화된 지식을 프롬프트에 저장하고, 적절한 프롬프트를 입력 데이터에 추가해 심층신경망에 전달함으로써 과거 지식을 효과적으로 활용한다. 이재길 교수팀은 기존 접근방식과 다르게 작업 간의 다양한 변화 정도에 적응할 수 있는
2024-08-06우리 대학 산업및시스템공학과 문일철 교수 연구팀이 세계 최고 수준의 기계학습 학회인 ‘국제머신러닝학회(ICML, International Conference on Machine Learning) 2024’에서 개최된 ‘멀티모달 작업계획 생성 경진대회(EgoPlan)’에서 다수의 세계 연구팀을 모두 제치고 1위로 우승을 했다고 30일 밝혔다. 본 대회는 7월 21일부터 27일까지 오스트리아 비엔나에서 개최됐으며, 참가자는 북경대(中), 북경 AGI연구소(中) 및 임페리얼칼리지 런던(Imperial College London, 英) 등의 6개국 13개 기관이 참여해 경쟁했다. 우리 연구팀은 국내 유일의 참가 기관으로 7월 26일 우승상 및 혁신상을 수상했다. 이번 대회는 인공지능이 주방에서 요리하는 과정을 비디오 및 지문으로 학습한 이후, 경험하지 못한 요리 과정에서 상식적으로 합당한 의사결정을 내려 조리할 수 있는지를 경쟁하는 시합
2024-07-30효과가 높은 신약 및 치료법 개발을 위한 단서가 제시됐다. 우리 대학 수리과학과 김재경 교수(기초과학연구원(IBS) 수리 및 계산 과학 연구단 의생명 수학 그룹 CI(Chief Investigator)) 연구팀은 인공지능(AI)을 이용해 동일 외부 자극에 개별 세포마다 반응하는 정도가 다른 ‘세포 간 이질성’의 근본적인 원인을 찾아내고, 이질성을 최소화할 수 있는 전략을 제시했다. 우리 몸속 세포는 약물, 삼투압 변화 등 다양한 외부 자극에 반응하는 신호 전달 체계(signaling pathway)가 있다. 신호 전달 체계는 세포가 외부 환경과 상호작용하며 생존하는 데 핵심적인 역할을 한다. 세포의 신호 전달 체계는 노벨생리의학상의 단골 주제일 정도로 중요하지만, 규명을 위해서는 수십 년에 걸친 연구가 필요하다. 신호 전달 체계는 세포 간 이질성에도 영향을 미친다. 세포 간 이질성은 똑같은 유전자를 가진 세포들이 동일 외부 자극에 다르게 반응하는 정도를
2024-01-17인공지능 기술이 사회 전반에 걸쳐 광범위하게 활용되며 인간의 삶에 많은 영향을 미치고 있다. 최근 인공지능의 긍정적인 효과 이면에 범죄자의 재범 예측을 위해 머신러닝 학습에 사용되는 콤파스(COMPAS) 시스템을 기반으로 학습된 모델이 인종 별로 서로 다른 재범 확률을 부여할 수 있다는 심각한 편향성이 관찰되었다. 이 밖에도 채용, 대출 시스템 등 사회의 중요 영역에서 인공지능의 다양한 편향성 문제가 밝혀지며, 공정성(fairness)을 고려한 머신러닝 학습의 필요성이 커지고 있다. 우리 대학 전기및전자공학부 황의종 교수 연구팀이 학습 상황과 달라진 새로운 분포의 테스트 데이터에 대해서도 편향되지 않은 판단을 내리도록 돕는 새로운 모델 훈련 기술을 개발했다고 30일 밝혔다. 최근 전 세계의 연구자들이 인공지능의 공정성을 높이기 위한 다양한 학습 방법론을 제안하고 있지만, 대부분의 연구는 인공지능 모델을 훈련시킬 때 사용되는 데이터와 실제 테스트 상황에서 사용될 데이터가 같
2023-10-30