본문 바로가기 대메뉴 바로가기

예종철 교수 연구팀, 삼성휴먼테크 논문대상 신호처리분야 금상 수상​
조회수 : 3322 등록일 : 2023-11-07 작성자 : 홍보실

삼성휴먼테크 시상식 사진

< 삼성휴먼테크 시상식 사진 >

우리 대학 김재철AI대학원 예종철 교수팀이 `확산모델 (diffusion model)의 사후 샘플링(posterior sampling)을 이용한 일반적인 역문제 해결 기법'으로 제 29회 삼성휴먼테크논문대상에서 신호처리 분야 금상을 수상했다고 밝혔다. 

삼성휴먼테크논문대상은 과학기술 저변 확대와 과학 인재 양성을 위해 삼성전자가 1994년 제정한 논문상으로, 매년 2,000편 가량의 논문 중 서면 및 발표 심사를 거쳐 창의성, 논리성, 실용성, 발전성이 뛰어난 논문을 선정하여 수여되는 상이다. 

바이오및뇌공학과 박사과정 졍형진, 김정솔 학생이 공동 1저자로 참여한 이 논문은, 확산 모델과 사후 샘플링을 결합하여 일반적인 역문제에 대한 새로운 관점과 해결방법을 제시하였고, 그 실용성과 독창성을 인정받아 대학부 신호처리 분야 수상작 7편 중 1위로 금상을 수상하였다.

그림 1. 연구 내용. DPS로 해결할 수 있는 역문제의 예시

< 그림 1. 연구 내용. DPS로 해결할 수 있는 역문제의 예시 >

역문제는 영상을 획득하는 과정에서 이미징 시스템의 특성과 잡음의 영향으로 망가진 측정값으로부터 실제 신호를 복원하는 문제로 정의된다. 이러한 문제는 영상 화질 개선부터 위상 복원을 통한 세포 구조 시각화와 같은 다양한 과학 분야에서 중요성과 실용성을 가지며, 수십 년간 지속적으로 연구되어 왔다. 과거의 인공지능 및 딥러닝 알고리즘은 이미징 시스템이 선형이며 잡음이 없는 경우를 가정하여 역문제를 효과적으로 해결하였으나, 이러한 가정은 현실 세계에서의 상황과 비교하여 훨씬 단순화된 형태였다.

이 연구에서는 처음으로 확산 모델을 이용해 사후 샘플링을 진행하는 방법으로 역문제를 해결하였는데, 이는 확산 모델이 생성하는 중간 이미지로 측정값을 근사하고, 실제 측정값과의 차이가 줄어들도록 중간 이미지를 보정하는 방식으로 구현된다. 

이를 통해 이미징 시스템이 선형 및 비선형인 경우, 그리고 이미징 시스템에서 흔히 발생하는 가우시안 잡음과 푸아송 잡음이 존재하는 경우에 대한 일반적인 역문제 해결이 가능함을 입증하였다. 나아가 개발된 기술은 여러 종류의 역문제에 대한 개별적 학습을 필요로 하지 않는 특성을 가지며, 이는 논문의 실용성을 높이고, 이전의 연구들과 차별성을 지니게 한다.

그림 2. 삼성휴먼테크 논문대상 로고

< 그림 2. 삼성휴먼테크 논문대상 로고 >

정형진, 김정솔 바이오및뇌공학과 박사과정 학생은 큰 규모의 논문대회에서 연구의 내용을 인정받아 기쁘고, 좋은 논문을 작성할 수 있도록 지도해주신 예종철 교수님께 감사하다고 소감을 밝혔다. 또한, 알고리즘의 성능과 효율성을 높이는 연구를 이어나가 역문제의 해결이 필요한 다양한 과학 분야들에 기여하고 싶다는 희망을 전했다. 

논문명: Diffusion Posterior Sampling for General Noisy Inverse Problems

관련뉴스