< (왼쪽부터) 생명과학과 강석조 교수, 손경표 박사과정, 정석환 박사과정, 엄은총 박사과정, 권도형 박사 >
우리 대학 생명과학과 강석조 교수 연구팀이 선천면역반응을 매개하는 중요 단백질인 STING의 활성을 조절하는 새로운 기전으로, 미토콘드리아 막 단백질이자 E3 유비퀴틴 리가아제인 MARCH5가 STING을 유비퀴틴시켜서 활성산소에 의해 STING이 비활성형 다량체로 응집되는 것을 억제함을 규명했다고 4일 밝혔다.
STING(Stimulator of interferon genes)은 선천면역 신호경로의 필수적인 어댑터 단백질로서 외부로부터 들어온 세균 및 바이러스로부터 유래한 세포질 내 DNA를 감지하는 cGAS(cyclic GMP-AMP synthase)가 생성한 cGAMP(2'3'-cyclic GMP-AMP)에 결합하여 활성화되면 TBK1(TANK-binding kinase 1)과 IRF3(Interferon regulatory factor 3)를 활성화하여 제1형 인터페론을 유도한다. 이를 통해서 염증반응과 다양한 면역세포를 활성화하여 병원균으로부터 우리 몸을 방어하는 면역반응을 일으킨다. STING은 또한 자가 염증성 질환, 암, 노화 및 퇴행성 뇌질환을 포함한 다양한 염증질환의 주요 매개체로 작용한다.
STING의 활성은 다양한 방법으로 조절되는 데, 세포내 이동, 번역 후 변형(post-translational modification, PTM), 고차원 구조체인 다량체 (polymer)의 형성 등이 알려져 있다. STING은 세포내 소기관인 소포체(endoplasmic reticulum)에 위치하고 활성 후 골지체로 이동하여 하위 신호전달을 매개한다. 인산화(phosphorylation), 유비퀴틴화(ubiquitination), 팔미토일화(palmitoylation), 산화(oxidation) 등의 다양한 번역 후 변형을 받으며, 활성화된 STING은 이량체(dimer)를 거쳐 활성형 다량체를 형성하여 신호전달을 매개한다. 하지만, 이들 조절 기전의 다이나믹스와 상호작용에 대해서는 알려진 바가 적다. 특히, 염증과 같은 조건에서 다량 생성되는 활성산소에 의해 STING이 비활성형 다량체를 형성하는 데 이를 억제하는 번역 후 변형 및 그 조절 기전에 대해서는 전혀 알려지지 않았다.
강 교수 연구팀은 이전 연구에서 STING이 위치한 소포체와 인접한 미토콘드리아의 다이나믹스를 조절하는 인자가 STING 활성에 영향을 미친다는 것을 밝혔다. 이에 대한 후속연구를 수행하던 중, 미토콘드리아 막 단백질이자 E3 유비퀴틴 리가아제로 알려진 MARCH5(Membrane associated RING-CH-type finger 5)가 결손된 마우스 배아 섬유아세포에서 STING 매개 제1형 인터페론 형성이 감소하며 STING 활성경로의 하위단계인 TBK1, IRF3의 활성 또한 저해되어있음을 통해 MARCH5가 STING의 활성에 양성 조절자로서 역할을 한다는 사실을 밝혔다. 나아가 강 교수팀은 MARCH5가 결손된 세포주에서 활성산소(reactive oxygen species, ROS)가 정상 세포주에 비해 높다는 것과 높은 활성산소는 STING이 정상 세포주에 보이는 STING의 활성형 다량체가 아닌 비활성형 다량체로의 형성을 촉진한다는 사실을 확인하였다.
< 그림 1. STING의 다양한 생물학적 역할과 본 연구를 통해 밝힌 활성산소에 의한 STING의 비활성화 억제 기전. 미토콘드리아 막 단백질인 MARCH5가 STING의 양성 조절자 역할을 하며, 기전적으로 MARCH5 단백질이 STING을 유비퀴틴시켜, 과도한 활성산소에 의해 산화된 STING이 비활성화 다량체를 생성하는 것을 막는다는 것을 밝혔음. (Biorender.com을 활용하여 그림) >
기전적으로 MARCH5 단백질이 STING과 결합하며 STING의 Lysine 19 잔기를 선택적으로 타겟하여 Lysine-63형으로 유비퀴틴화하는 것을 확인하였다. STING은 높은 활성산소 조건에서 Cysteine 205 잔기에 산화가 일어나는데, MARCH5에 의한 STING 유비퀴틴화는 과도한 활성산소 조건에서 산화된 STING이 비활성 STING 다량체를 형성하는 것을 억제하여 정상적인 STING활성을 갖도록 돕는다는 사실을 규명하였다.
강석조 교수는 “본 연구는 미토콘드리아 막 단백질이 산화된 STING의 다량체 형성을 조절하는 원리를 최초로 제공한 연구이면서 STING이라는 단백질을 통하여, 다양한 번역 후 변형간의 상호 작용과 고차원 구조적 변화, 그리고 이에 기여하는 세포내 소기관의 교류를 동시에 밝혀 보다 넓은 학문분야에 활용되는 지식을 제공했다는 데 의의가 크다”고 언급하면서, “본 연구를 통해 얻은 새로운 지식은 STING이 매개하는 다양한 염증성 질환에 대한 보다 깊은 이해와 치료제 개발 연구에 가치 있게 활용될 것으로 기대한다”고 전했다.
이번 연구는 유럽 분자생물학의 권위있는 국제 학술지 `엠보 리포트 저널 (EMBO (European Molecular Biology Organization) Reports)’에 11월 2일 字 온라인판에 게재됐다 (논문명: MARCH5 promotes STING pathway activation by suppressing polymer formation of oxidized STING). KAIST 생명과학과 손경표 박사과정, 정석환 박사과정, 엄은총 박사과정이 공동 제1 저자로 연구를 주도하였고, 권도형 박사(現 부스트이뮨)가 함께 참여하였다.
이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
기계공학과 김정원 교수가 지난 11월 16일 IEEE Photonics Society의 2024년도 Distinguished Lecturer로 선정되었다. IEEE Photonics Society는 매년 광학 및 광공학 분야에서 세계적인 연구 성과를 보이고 있는 연구자 5명 내외를 Distinguished Lecturer로 선정하여, 전세계를 순회하며 대학 및 연구기관들에서 초청강연을 하도록 후원하고 있다. 김정원 교수는 초저잡음, 초안정 광주파수빗(optical frequency comb) 광원을 개발하고 이를 이용한 새로운 타이밍 응용 분야들을 개척하고 있으며, 연구의 독창성과 우수성을 인정받아 Distinguished Lecturer로 선정되었다. 김 교수는 “It’s the perfect timing for optical frequency combs”이라는 주제의 강연을 통하여 초저잡음, 초안정 광주파수빗 광원들의 원리와 이를 이
2023-11-3018세기 이탈리아의 작곡가 비발디는 협주곡 <사계>를 통해 계절과 자연의 아름다움을 노래했다. 그렇다면 심각한 기후변화를 겪고 난 미래의 <사계>는 어떤 음악으로 표현될까? 2050년 대전의 기후 예측 데이터를 바탕으로 비발디의 사계를 재창작한 제693회 문화행사 <사계 2050-대전> 공연이 22일 저녁 우리 대학 대전 본원 대강당에서 열린다. 바이올리니스트 임지영(연세대 기악과 교수)이 프로젝트 예술감독과 솔리스트를 맡아 40인조 오케스트라와 협연한다. <사계 2050>은 글로벌 디지털 디자인 기업 ‘아카(AKQA)’가 기후변화의 위험성을 알리기 위해 시작한 글로벌 프로젝트다. 2021년부터 지금까지 서울을 포함한 6개 대륙 14개 도시에서 공연됐다. 이날 공연은 앞선 무대들과는 다르게 KAIST의 기술력으로 새롭게 구성한 곡이 연주된다. 문화기술대학원 석사과정 방하연·김용현(지도교수 남
2023-09-22우리 대학 생명과학과 김찬혁 교수 연구팀이 면역관문 신호를 극복하는 차세대 `키메라 항원 수용체 T(chimeric antigen receptor T, 이하 CAR-T) 세포' 치료제를 개발했다고 20일 밝혔다. CAR-T 세포 치료제는 우리 몸에서 항암 및 항바이러스 기능에 중요한 역할을 하는 면역세포인 T 세포에 CAR 유전자를 도입해 항암 기능을 증가시킨 유전자 세포 치료제로서, 기존의 모든 항암 치료에 불응한 말기 백혈병 환자들을 대상으로 한 임상 시험에서 80% 이상의 높은 치료 효과를 보이며 `기적의 항암제'로 불리고 있는 항암 치료제다. 김 교수 연구팀은 CAR-T 세포 치료제 제작에 사용되는 렌티바이러스 벡터를 2종류의 짧은 헤어핀 RNA(short hairpin RNA, 이하 shRNA)가 CAR 유전자와 함께 발현하도록 개량했다. 이들 shRNA를 통해 T 세포의 기능 저하를 유도하는 2종의 면역관문 수용체인 `PD-1'과 `TIGIT'의 발현을 동시
2021-10-21우리 대학 의과학대학원 신의철 교수, 이호영 박사, 정성주 대학원생이 감염질환에서 방관자 (bystander) T세포 활성화의 중요성을 강조하는 주제로 세계적인 면역학 권위지인 `네이처 이뮤놀로지(Nature Immunology)' 8월호에 초청 리뷰 논문을 게재했다고 31일 밝혔다. 인간 질병에서 방관자 T세포의 역할에 관한 연구를 세계적으로 선도하고 있는 신의철 교수 연구팀은 이번 리뷰 논문을 통해 다양한 감염질환에서 방관자 T세포의 역할과 이를 조절하는 기전들을 총체적으로 고찰하고 인간 질병 치료에 응용할 수 있는 미래 연구의 방향을 제시했다. 일반적으로 인체는 바이러스에 감염되면 항바이러스 작용을 하는 T세포가 활성화되어 질병으로부터의 회복을 촉진한다고 알려져 있다. 이때 특정 바이러스에 대응하는 T세포만 활성화되고 관련 없는 T세포들은 활성화되지 않는데, 이러한 현상을 선택적 면역반응이라고 한다. 선택적 면역반응은 T세포가 바이러스의 항원 펩타이드를 인식하면서 이
2021-09-01우리 대학 의과학대학원 신의철 교수 연구팀이 충남대학교병원 감염내과 김연숙, 천신혜 교수팀과의 공동연구를 통해 코로나19 환자들에서 자연살해 세포의 항바이러스 기능이 약화돼 있고, 이러한 기능 변화는 경증 코로나19 환자에서는 일주일 내로 사라지지만 중증 환자에서는 오래 지속됨을 규명했다고 10일 밝혔다. 이로써, 항바이러스 선천면역 반응의 한 축을 담당하는 자연살해 세포의 기능 이상을 중증 코로나19 환자에서 처음으로 규명하게 됐다. 우리 몸은 바이러스에 감염되면 이에 대항하여 일차적으로 선천면역 반응이 나타나며, 항바이러스 선천면역 반응을 담당하는 주된 세포가 바로 자연살해 세포다. 이러한 자연살해 세포의 대부분을 차지하는 것이 바이러스에 감염된 세포를 직접 죽이는 세포독성 자연살해 세포인데, 코로나19 환자에서 이러한 세포독성 자연살해 세포의 수나 기능이 감소돼 있다는 보고는 있었지만, 자연살해 세포의 구체적인 변화나 기능감소 기전에 대해서는 규명된 바가 없었다. 이번
2021-08-11