< (왼쪽부터) 전기및전자공학부 조민승 박사, 부산대학교 서민호 교수, 전기및전자공학부 윤준보 교수 >
최근 친환경 수소 자동차 보급이 증가함에 따라 안전과 직결된 필수 요소인 수소 센서의 중요성이 더욱 높아지고 있다. 특히 빠른 수소 누출 감지를 위한 핵심 성능 지표인 센서 감지 속도의 경우 1초 이내로 감지하는 기술이 도전적인 과제로 남아있다. 이에 세계 최초 미국 에너지청(U.S. Department of Energy) 기준 성능을 충족하는 수소 센서가 개발되어 화제다.
우리 대학 조민승 박사(전기및전자공학부 윤준보 교수팀)가 현대자동차 기초소재연구센터 전자기에너지소재 연구팀, 부산대학교 서민호 교수와의 협업을 통해 모든 성능 지표가 세계적인 공인 기준을 충족하면서 감지 속도 0.6초 이내의 기존보다 빠른 수소 센서를 세계 최초로 개발했다고 10일 밝혔다.
기존 상용화된 수소 센서보다 빠르고 안정적인 수소 감지 기술 확보를 위해 우리 대학은 현대자동차와 함께 2021년부터 차세대 수소 센서 개발에 착수했고, 2년여의 개발 끝에 성공하였다.
< 그림 1. (왼쪽) 본 연구에서 개발한 Coplanar 히터가 집적된 수소 센서 구조, 감지 물질인 Pd 나노와이어는 20 nm 두께임에도 안정적으로 공중 부유되어 있는 형태이다. (오른쪽) 0.1~4% 농도의 수소에 대해서 0.6초 이내로 동작하는 수소 센서 성능. >
기존의 수소 센서 연구들은 수소 센서에 많이 활용되는 팔라듐(palladium, Pd) 소재에 촉매 처리를 하거나 합금을 만드는 등 주로 감지 소재에만 집중하여 연구됐다. 이러한 연구들은 특정 성능 지표에선 매우 뛰어난 성능을 보이지만 모든 성능 지표를 충족하지는 못했으며, 일괄 공정이 어려워 상용화에 한계가 있었다. 이를 극복하기 위해 해당 연구진은 순수한 팔라듐 물질 기반으로 독자적인 마이크로/나노 구조 설계 및 공정 기술을 접목해 모든 성능 지표를 만족하는 센서를 개발했다. 또한 향후 양산을 고려해 합성 소재가 아닌 물질적 제약이 적은 순수 금속 소재들을 활용했으며, 반도체 일괄 공정 기반으로 대량 생산이 가능한 차세대 수소 센서를 개발했다.
개발한 소자는 히터-절연층-감지물질이 수직으로 적층 되어 있는 구조의 기존 가스 센서가 가지는 불균일한 온도 분포를 극복하기 위해 히터와 감지물질이 동일 평면상에 나란히 집적되어 있는 차별적인 공면(Coplanar) 구조가 적용됐다. 감지 물질인 팔라듐 나노 소재는 완전히 공중 부유 된 구조로 하단부까지 공기 중에 노출되어 있으며, 가스와의 반응 면적을 극대화해 빠른 반응 속도를 확보했다. 또한 팔라듐 감지 물질은 전 영역이 균일한 온도로 동작하며, 이를 통해 온도에 민감한 감지 성능들을 정확히 조절해 빠른 동작 속도, 폭넓은 감지 농도, 온도/습도 둔감성을 연구팀은 확보했다.
< 그림 2. 본 연구에서 개발한 Coplanar 히터가 집적된 수소 센서 전자현미경 사진 (왼쪽) 전체 소자 사진 (오른쪽 상단) 공중 부유된 Pd 나노와이어 (오른쪽 하단) Pd 나노와이어 단면 >
연구팀은 제작된 소자를 블루투스 모듈과 패키징 하여 무선으로 1초 이내로 수소 누출을 감지하는 통합 모듈을 제작한 후 성능을 검증했으며, 이는 기존 고성능 광학식 수소 센서와 달리 휴대성이 높아 수소 에너지가 보급되는 다양한 곳에 적용될 수 있을 것으로 기대된다.
연구를 주도한 조민승 박사는 “이번 연구 결과는 기존 수소 센서 성능 한계를 뛰어넘어 고속 동작할 뿐만 아니라 실사용에 필요한 신뢰성, 안정성까지 확보했기에 중요한 가치를 가지며, 자동차, 수소 충전소, 가정 등 다양한 곳에 활용될 수 있을 것”이라고 말했다. 또한 “이번 수소 센서 기술의 상용화를 통해 안전한 친환경 수소 에너지 세상을 앞당기는 데 기여하고 싶다” 라며 앞으로의 계획을 밝혔다.
< 그림 3. (왼쪽) 무선 통신 집적 및 패키징된 수소 센서와 휴대폰 어플리케이션을 통한 실시간 수소 감지 확인 결과. (가운데) 수소 농도 수준에 따라 LED 깜빡임 주기 조절 기능. (오른쪽) 실시간 수소 유출 데모에도 1초 이내로 감지하는 성능 확인 결과 >
연구팀은 개발된 소자를 현재 현대자동차와 함께 소자를 웨이퍼 스케일로 제작한 후 차량용 모듈에 탑재해 감지 및 내구 성능을 추가로 검증하는 중이다.
조민승 박사가 제1 저자로 수행한 이번 연구는 미국, 한국 등에 3건의 특허가 출원돼 있으며, 저명 국제 학술지 `ACS 나노(Nano)'에 출판됐다. (논문명: Ultrafast (∼0.6 s), Robust, and Highly Linear Hydrogen Detection up to 10% Using Fully Suspended Pure Pd Nanowire). (Impact Factor: 18.087).
(https://pubs.acs.org/doi/10.1021/acsnano.3c06806?fig=fig1&ref=pdf)
한편 이번 연구는 한국연구재단의 나노및소재기술개발사업 지원과 현대자동차 기초소재연구센터의 지원 및 공동 개발을 통해 수행됐다.
최근 인간의 뇌를 모방해 하드웨어 기반으로 인공지능 연산을 구현하는 뉴로모픽 컴퓨팅 기술이 최근 주목받고 있다. 뉴로모픽 컴퓨팅의 단위 소자로 활용되는 멤리스터(전도성 변화 소자)는 저전력, 고집적, 고효율 등의 장점이 있지만 멤리스터로 대용량 뉴로모픽 컴퓨팅 시스템을 구현하는데 불규칙한 소자 특성으로 인한 신뢰성 문제가 발견되었다. 우리 연구진이 뉴로모픽 컴퓨팅의 상용화를 앞당길 신뢰성 향상 기술을 개발하여 화제다. 우리 대학 전기및전자공학부 최신현 교수 연구팀이 한양대학교 연구진과의 공동 연구를 통해 차세대 메모리 소자의 신뢰성과 성능을 높일 수 있는 이종원자가 이온* 도핑 방법을 개발했다고 21일 밝혔다. * 이종원자가 이온(Aliovalent ion): 원래 존재하던 원자와 다른 원자가(공유 결합의 척도, valance)를 갖는 이온을 말함 공동연구팀은 기존 차세대 메모리 소자의 가장 큰 문제인 불규칙한 소자 특성 변화 문제를 개선하기 위해, 이종원자가 이온을
2024-06-21우리 대학 김재철AI대학원 최재식 교수(㈜인이지 대표이사) 연구팀이 인공지능 딥러닝의 의사결정에 큰 영향을 미치는 입력 변수의 기여도를 계산하는 세계 최고 수준의 기술을 개발했다고 23일 밝혔다. 최근 딥러닝 모델은 문서 자동 번역이나 자율 주행 등 실생활에 널리 보급되고 활용되는 추세 및 발전에도 불구하고 비선형적이고 복잡한 모델의 구조와 고차원의 입력 데이터로 인해 정확한 모델 예측의 근거를 제시하기 어렵다. 이처럼 부족한 설명성은 딥러닝이 국방, 의료, 금융과 같이 의사결정에 대한 근거가 필요한 중요한 작업에 대한 적용을 어렵게 한다. 따라서 적용 분야의 확장을 위해 딥러닝의 부족한 설명성은 반드시 해결해야 할 문제다. 최교수 연구팀은 딥러닝 모델이 국소적인 입력 공간에서 보이는 입력 데이터와 예측 사이의 관계를 기반으로, 입력 데이터의 특징 중 모델 예측의 기여도가 높은 특징만을 점진적으로 추출해나가는 알고리즘과 그 과정에서의 입력과 예측 사이의 관계를 종합하는 방법
2022-11-23우리 대학 전기및전자공학부 최신현 교수 연구팀이 부가적인 회로 없이 소자의 특성을 이용해 인공지능(AI)의 학습 정확도를 높이면서, 높은 내구성을 바탕으로 신뢰성 높은 반복 동작이 가능하도록 설계된, 인간 뇌의 신경전달물질을 모사한 고신뢰성 인공 *시냅스 트랜지스터를 개발했다고 16일 밝혔다. ☞ 시냅스 트랜지스터(Synapse Transistor): 신경 세포간 연결부인 시냅스를 모사하는 트랜지스터 소자로, 연결 강도를 의미하는 가중치(Weight)를 채널의 저항(또는 컨덕턴스)값으로 나타내 이전 단에서 다음 단으로 흐르는 전류의 양을 조절한다. 최 교수 연구팀은 기존 낸드 플래시 메모리에 사용되는 구조를 이용하면서도, 기존 낸드 플래시의 단점인 낮은 내구성을 개선하는 방법을 차용해, 안정적인 시냅스 역할을 할 수 있는 트랜지스터를 개발했다. 낸드 플래시 메모리는 높은 전압을 이용해, 소자의 구성 물질을 손상시키는 방법(FN 터널링)으로 데이터를 저장하는 반면, 연구팀
2022-11-16우리 대학이 ʻ사회를 위한 보건의료 분야 인공지능 활용 가이드(Using Artificial Intelligence to Support Healthcare Decisions: A Guide for Society)ʼ를 국제 공동연구를 통해 개발했다. 코로나 19의 세계적인 대유행은 인공지능 기술의 빠른 상용화를 촉진했다. 일례로, 영국의 인공지능 스타트업인 베네볼런트AI(BenevolentAI)는 신종 질병 치료약물을 식별하기 위해 통상적으로 8년이 걸리던 기간을 인공지능 기술을 활용해 단 1주일로 단축시켰다. 이처럼 인공지능 기술은 경제·산업·사회·문화 등 전방위로 확산되면서 엄청난 부가가치와 생활의 편익을 창출하고 있다. 하지만, 급속한 기술 도입이 데이터의 편향이나 오·남용 등의 맹점을 함께 가져왔다는 우려도 중요하게 대두되고 있다. 특히, 보건의료 분야는 인공지능을 뒷받침하는 데이터의 품질과 검증 여부가 생명과 직결되
2021-08-17〈 가오민 연구원, 박인규 교수, 조민규 연구원 〉 우리 대학 기계공학과 박인규 교수, 신소재공학과 정연식 교수 공동 연구팀이 폴리스티렌(Polystyrene) 구슬의 자기 조립(self-assembly) 현상을 이용해 고성능의 실리콘 기반 수소센서를 개발했다. 연구팀이 개발한 수소 센서는 제작 과정이 단순하고 비용이 저렴해 모바일 기기에 탑재할 수 있어 전력 소모에 어려움을 겪는 모바일 분야에 기여할 수 있을 것으로 기대된다. 가오 민(Gao Min) 연구원, 조민규 박사후 연구원, 한혁진 박사과정이 참여한 이번 연구는 나노 분야 국제 학술지 ‘스몰(Small)’ 3월 8일자 표지논문에 선정됐다. 청정에너지인 수소 가스는 차세대 에너지원으로 각광받고 있다. 현재도 냉각 시스템이나 석유 정제시설 등 다양한 산업분야에서 활용되고 있지만 무색, 무취의 가연성 물질이기 때문에 조기 발견이 어려워 고성능 수소 센서를 개발하는 것이 중요하다. 그러나 기존 수
2018-04-04