< (왼쪽부터) 전기및전자공학부 최양규 교수, 류승탁 교수, 김승일 박사과정 >
사물인터넷(IoT), 자율 주행 등 5G/6G 시대 소자 또는 기기 간의 상호 정보 교환이 급증함에 따라 해킹 공격이 고도화되고 있다. 이에 따라, 기기에서 데이터를 안전하게 전송하기 위해서는 보안 기능 강화가 필수적이다.
우리 대학 전기및전자공학부 최양규 교수와 류승탁 교수 공동연구팀이 ‘해킹 막는 세계 최초 보안용 암호 반도체’를 개발하는 데 성공했다고 29일 밝혔다.
연구팀은 100% 실리콘 호환 공정으로 제작된 핀펫(FinFET) 기반 보안용 암호반도체 크립토그래픽 트랜지스터(cryptographic transistor, 이하 크립토리스터(cryptoristor))를 세계 최초로 개발했다. 이는 트랜지스터 하나로 이루어진 독창적 구조를 갖고 있을 뿐만 아니라, 동작 방식 또한 독특해 유일무이한 특성을 구비한 난수발생기다.
인공지능 등의 모든 보안 환경에서 가장 중요한 요소는 난수발생기이다. 가장 널리 사용되는 보안 칩인 ‘고급 암호화 표준(advanced encryption standard, AES)’에서 난수발생기는 핵심 요소로, AES 보안 칩 전체 면적의 약 75%, 에너지 소모의 85% 이상을 차지한다. 따라서, 모바일 혹은 사물인터넷(IoT)에 탑재가 가능한 저전력/초소형 난수발생기 개발이 시급하다.
기존의 난수발생기는 전력 소모가 매우 크고 실리콘 CMOS 공정과의 호환성이 떨어진다는 단점이 있고, 회로 기반의 난수발생기들은 점유 면적이 매우 크다는 단점이 있다.
연구팀은 기존 세계 최고 수준 연구 대비 전력 소모와 점유 면적 모두 수천 배 이상 작은 암호 반도체인 단일 소자 기반의 크립토리스터(cryptoristor)를 개발했다. 절연층이 실리콘 하부에 형성되어 있는 실리콘 온 인슐레이터(Silicon-on-Insulator, SOI) 기판 위에 제작된 핀펫(FinFET)이 가지는 내재적인 전위 불안정성을 이용해 무작위적으로 0과 1을 예측 불가능하게 내보내는 난수발생기를 개발했다.
< external_image >
다시 설명하면, 보통 모바일 기기 등에서 정보를 교환할 때 데이터를 암호화하는 알고리즘에는 해커가 암호화한 알고리즘을 예측할 수 없도록 하는 것이 중요하다. 이에 무작위의 0과 1이 난수이며 0과 1의 배열이 매번 다른 결과가 나오게 하여 예측 불가능성을 가지도록 함으로써 공격자가 예측하지 못하도록 차단하는 방식이다.
특히, 크립토리스터 기반 난수발생기 연구는 국제적으로도 구현한 사례가 없는 세계 최초의 연구이면서, 기존 논리 연산용 또는 메모리용 소자와 동일한 구조의 트랜지스터이기 때문에, 현재 반도체 설비를 이용한 양산 공정으로 100% 제작이 가능하며 저비용으로 빠르게 대량생산이 가능하다는 점에서 의미가 크다.
연구를 주도한 김승일 박사과정은 개발된 “암호 반도체로서 초소형/저전력 난수발생기는 특유의 예측 불가능성으로 인해 보안 기능을 강화해 칩 또는 칩 간의 통신 보안으로 안전한 초연결성을 지원할 수 있고, 특히 기존 연구 대비 에너지, 집적도, 비용 측면에서 탁월한 장점을 갖고 있어 사물인터넷(IoT) 기기 환경에 적합하다”고 연구의 의의를 설명했다.
전기및전자공학부 김승일 박사과정이 제1 저자, 유형진 석사가 공저자로 참여한 이번 연구는 국제학술지 ‘사이언스(Science)’의 자매지인 ‘사이언스 어드밴시스(Science Advances)’ 2024년 2월 온라인판에 정식 출판됐다. (논문명 : Cryptographic transistor for true random number generator with low power consumption)
한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 국가반도체연구실지원핵심기술개발사업의 지원을 받아 수행됐다.
머리카락 두께의 수만 분의 1도 관찰할 수 있는 초정밀 현미경으로 특수 전자소자를 측정할 때 발생하던 오차의 원인이 밝혀졌다. 한미 공동 연구진이 그동안 측정 대상 물질의 특성으로 여겨졌던 오차가, 실제로는 현미경 탐침 끝부분과 물질 표면 사이의 극미세 공간 때문이라는 사실을 밝혀낸 것이다. 이번 연구는 반도체, 메모리 소자, 센서 등에 활용되는 나노 소재 특성을 정확하게 분석하여 관련 기술 발전에 크게 기여할 것이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 미국 버클리 대학 레인 마틴(Lane W. Martin) 교수팀과의 국제 공동연구를 통해, 주사탐침현미경 측정의 최대 난제였던 신호 정확도를 저해하는 핵심 요인을 규명하고 이를 제어하는 획기적인 방법을 개발했다고 18일 밝혔다. 연구팀은 현미경 탐침과 시료 표면 사이에 존재하는 비접촉 유전 간극이 측정 오차의 주요 원인임을 밝혀냈다. 이 간극은 측정환경에서 쉽게 변조되거나 오염물질로 채워져 있어 전기적 측정에
2024-11-18우리 대학이 12일(화) 오전 대전 인터시티호텔에서 ‘제1회 한국인공지능시스템포럼(이하 KAISF) 조찬 강연회’를 개최했다. 이는 우리 대학 인공지능반도체대학원이 AI 기술에 관련 미래와 혁신 등에 대해 다양한 분야의 전문가들이 함께 논의하는 장을 열고자 추진됐다. 총 77명의 전문가가 참석한 이번 행사에는 이광형 총장, 홍진배 정보통신기획평가원장, 방승찬 한국전자통신연구원장 등이 축사를 전했다. 이어서 ▲칩렛 이종 집적 첨단 패키지 기반 페타플롭스급 고성능 PIM 설계(한진호 한국전자통신연구원 PIM인공지능반도체연구실장) ▲자율주행·자율 행동체 연구개발사업 소개(최정단 한국전자통신연구원 모빌리티로봇연구본부장)에 대해 발표했다. 이후 인공지능 반도체 설계 전문 기업인 리벨리온(Rebellions)의 박성현 대표가 ‘인공지능 반도체와 리벨리온의 여정’을 주제로 강연을 진행했다. 박성현 리벨리온 대표는 강연에서 &ldq
2024-11-12지난 8월 8일부터 11일(현지 시각) 미국 라스베이거스에서 사이버 보안 분야 최고 학회 중 하나인 데프콘(DEF CON)에서 미국 고등연구계획국(이하 DARPA)의 주도하에 AI 사이버챌린지(AI Cyber Challenge, AIxCC)의 예선 대회가 진행됐다. 이는 AI를 활용한 차세대 해킹 시스템 경연 대회다. 우리 대학 전기및전자공학부 윤인수 교수 연구실이 속한 연합팀, 팀 애틀랜타(Team Atlanta)가 국내 대학이 포함된 팀으로서는 유일하게 톱(TOP) 7에 포함돼 내년 8월 개최 예정인 AI 사이버 챌린지 결승 진출팀으로 선정됐다고 21일 밝혔다. 팀 애틀랜타는 KAIST, 삼성 리서치, POSTECH, 조지아 공대의 연합팀으로, 현재 삼성 리서치 상무로 재직 중인 조지아 공대 김태수 교수의 연구실 출신 인원들이 주축이 되어 구성된 팀이다. 팀 이름은 조지아 공대가 있는 미국의 도시, 애틀랜타에서 유래했다. 팀 애틀랜타의 윤인수 교수는 세계적인 화이
2024-08-21우리 대학이 삼성전자와 ‘130nm BCDMOS 공정 지원' 협약을 23일 오후 체결한다. 삼성전자가 반도체 설계 전문 인재 양성을 위해 지원하는 BCDMOS(복합고전압소자: Bipolar-CMOS-DMOS)*는 고전압과 고속 동작이 필요한 전력 관리 응용 분야에 적합한 공정이다. 이번 협약을 바탕으로 130nm(나노미터) BCDMOS 8인치 공정을 올해 하반기부터 도입해 국내 반도체 전공 석·박사 과정 학생에게 칩 제작 기회를 제공한다. 이를 위해, 우리 대학 반도체설계교육센터(소장 박인철, IC Design Education Center 이하 IDEC)는 130nm BCDMOS 공정을 위한 설계 전자설계자동화툴(EDA Tool)과 기술 지원 환경을 마련했다. IDEC은 삼성전자와 협력해 2021년부터 28nm 로직** 공정 칩 제작 기회를 학생들에게 제공하고 있으며, 지난해 28nm FD-SOI***공정 지원도 추가했다. 올해 제공된
2024-07-24과학기술정보통신부·정보통신기획평가원이 주관하는 PIM인공지능반도체 핵심기술개발사업의 지원을 받고있는 우리 대학 PIM반도체설계연구센터가 AI 반도체 전문인력 양성을 위해 전국 AI 및 반도체 관련 학과 학부생과 대학원생을 대상으로 SK하이닉스와 삼성전자의 PIM* 기반 이론 및 실습 교육을 진행했다. 강의는 6월 20일(목)부터 6월 21일(금)까지 SK하이닉스 교육, 7월 4일(목)부터 7월 5일(금)까지 삼성전자 교육을 각각 KAIST PIM반도체설계연구센터에서 진행했다. *PIM(Processing-In-Memory): 메모리 반도체에 연산 기능을 추가하여 AI와 빅데이터 처리 분야에서 데이터 처리 속도를 높이면서도 사용 전력을 줄이는 반도체 설계 기술 이번 교육은 SK하이닉스의 AiM*과 삼성전자의 HBM-PIM*을 활용하여 수강생들이 직접 실습할 수 있는 기회를 제공했다. 전국 25개 대학교에서 300명이 넘는 학생들이 접수하여 높은 관심을 받았다
2024-07-11