< (왼쪽부터) 신소재공학과 홍승범 교수, 제네바대학교 패트리샤 파루치 교수, 신소재공학과 졸업생 조성우 박사 >
차세대 반도체 메모리의 소재로 주목을 받고 있는 강유전체는 차세대 메모리 소자 혹은 작은 물리적 변화를 감지하는 센서로 활용되는 등 그 중요성이 커지고 있다. 이에 반도체의 핵심 소자가 되는 강유전체를 화학물질없이 식각할 수 있는 연구를 성공해 화제다.
우리 대학 신소재공학과 홍승범 교수가 제네바 대학교와 국제공동연구를 통해 강유전체 표면의 비대칭 마멸* 현상을 세계 최초로 관찰 및 규명했고, 이를 활용해 혁신적인 나노 패터닝 기술**을 개발했다고 26일 밝혔다.
*마멸: 물체 표면의 재료가 점진적으로 손실 또는 제거되는 현상
**나노 패터닝 기술: 나노스케일로 소재의 표면에 정밀한 패턴을 생성하여 다양한 첨단 기술 분야에서 제품 성능을 향상시키는데 사용되는 기술
연구팀은 강유전체 소재의 표면 특성에 관한 연구에 집중했다. 이들은 원자간력 현미경(Atomic Force Microscopy)을 활용해 다양한 강유전체의 트라이볼로지(Tribology, 마찰 및 마모) 현상을 관찰했고, 강유전체의 전기적인 분극* 방향에 따라 마찰되거나 마모되는 특성이 다르다는 것을 세계 최초로 발견했다. (그림 1) 아울러, 이러한 분극 방향에 따라 달라지는 트라이볼로지의 원인으로 변전 효과(Flexoelectric effect)*에 주목했다.
*전기적 분극(electric dipole): 자석의 북극과 남극처럼 전기적으로 양극과 음극이 있는 것을 의미함
*변전 효과: 물질이 휘어졌을 때 분극이 발생하는 현상이지만, 거시 규모에서 물질을 구부렸을 때 유도되는 분극의 크기가 매우 작아 그동안 큰 주목을 받지 못했다. 그러나 2010년대 들어서 물질이 나노스케일로 미세화될 경우, 매우 큰 변전 효과가 발생할 수 있다는 연구 결과가 나오면서 많은 연구자의 주목을 받기 시작했다.
연구진은 강유전체의 트라이볼로지 특성이 나노 단위에서 강한 응력이 가해질 때 발생하는 변전 효과로 인해 강유전체 내부의 분극 방향에 따른 상호작용으로 트라이볼로지 특성이 바뀌게 된다는 것을 발견했다. 또한 이러한 새로운 강유전체 트라이볼로지 현상을 소재의 나노 패터닝에 응용했다.
< 그림 1. 강유전체 표면의 비대칭 트라이볼로지, a: 본 연구의 개념도. 강도 및 경도가 높은 다이아몬드 탐침을 이용하여 대표적인 강유전체 소재인 LiNbO3 단결정을 기계적으로 갈았을 때 분극 방향에 따라 마모 특성이 다름을 보여줌. b-e: 기계적 마모 이전 평탄했던 소재 표면(b)이 분극 방향(e)에 따라 다르게 갈림 (c). 기계적 마모 중 마찰 신호 또한 분극 방향에 따라 달라짐을 보임 (d). 스케일 바: 2 µm >
이러한 패터닝 방식은 기존의 반도체 패터닝 방식과는 다르게 화학 물질 및 고비용의 리소그래피 장비가 필요하지 않고, 기존 공정 대비 매우 빠르게 나노 구조를 제작할 수 있는 장점이 있다.
이번 연구의 제1 저자인 신소재공학과 졸업생 조성우 박사는 “이번 연구는 세계 최초로 강유전체 비대칭 트라이볼로지를 관찰하고 규명한 데 의의가 있고, 이러한 분극에 민감한 트라이볼로지 비대칭성이 다양한 화학적 구성 및 결정 구조를 가진 강유전체에서 널리 적용될 수 있어 많은 후속 연구를 기대할 수 있다”고 밝혔다.
공동교신저자로 본 연구를 공동 지도한 제네바 대학교 파루치(Paruch) 교수는 “변전 효과를 통해 강유전체의 도메인이 분극 방향에 따라 서로 다른 표면 특성을 나타내는 것을 활용함으로써, 다양하고 유용한 기술들을 개발할 수 있을 것이다”며 이번 연구가 앞으로 뻗어나갈 분야에 대한 강한 자신감을 피력했다.
< 그림 2. 비대칭 트라이볼로지를 이용한 신개념 패터닝 기술. a: 반복적인 전기 분극 반전과 기계적 패터닝을 이용한 3차원의 복잡한 나노 구조를 제작할 수 있음. b-d: 분극 유래 리소그래피를 이용해 제작된 3차원 복잡 구조의 실시 예, 스케일 바: 3 µm >
연구를 이끈 홍승범 교수는 “이번 연구에서 개발된 패터닝 기술은 기존 반도체 공정에서 쓰이는 패터닝 공정과 달리 화학 물질을 사용하지 않고, 매우 낮은 비용으로 대면적 나노 구조를 만들 수 있어 산업적으로 활용될 수 있는 잠재력을 가지고 있다”고 전망했다.
한편, 이번 연구는 한국연구재단(2020R1A2C2012078, NRF-2022K1A4A7A04095892, RS-2023-00247245), KAIST 글로벌특이점 사업의 지원 및 스위스, 스페인 연구진과의 국제공동연구를 통해 수행됐으며, 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 1월 9일 자 출판됐다. (논문 제목: Switchable tribology of ferroelectrics)
머리카락 두께의 수만 분의 1도 관찰할 수 있는 초정밀 현미경으로 특수 전자소자를 측정할 때 발생하던 오차의 원인이 밝혀졌다. 한미 공동 연구진이 그동안 측정 대상 물질의 특성으로 여겨졌던 오차가, 실제로는 현미경 탐침 끝부분과 물질 표면 사이의 극미세 공간 때문이라는 사실을 밝혀낸 것이다. 이번 연구는 반도체, 메모리 소자, 센서 등에 활용되는 나노 소재 특성을 정확하게 분석하여 관련 기술 발전에 크게 기여할 것이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 미국 버클리 대학 레인 마틴(Lane W. Martin) 교수팀과의 국제 공동연구를 통해, 주사탐침현미경 측정의 최대 난제였던 신호 정확도를 저해하는 핵심 요인을 규명하고 이를 제어하는 획기적인 방법을 개발했다고 18일 밝혔다. 연구팀은 현미경 탐침과 시료 표면 사이에 존재하는 비접촉 유전 간극이 측정 오차의 주요 원인임을 밝혀냈다. 이 간극은 측정환경에서 쉽게 변조되거나 오염물질로 채워져 있어 전기적 측정에
2024-11-18우리 대학이 12일(화) 오전 대전 인터시티호텔에서 ‘제1회 한국인공지능시스템포럼(이하 KAISF) 조찬 강연회’를 개최했다. 이는 우리 대학 인공지능반도체대학원이 AI 기술에 관련 미래와 혁신 등에 대해 다양한 분야의 전문가들이 함께 논의하는 장을 열고자 추진됐다. 총 77명의 전문가가 참석한 이번 행사에는 이광형 총장, 홍진배 정보통신기획평가원장, 방승찬 한국전자통신연구원장 등이 축사를 전했다. 이어서 ▲칩렛 이종 집적 첨단 패키지 기반 페타플롭스급 고성능 PIM 설계(한진호 한국전자통신연구원 PIM인공지능반도체연구실장) ▲자율주행·자율 행동체 연구개발사업 소개(최정단 한국전자통신연구원 모빌리티로봇연구본부장)에 대해 발표했다. 이후 인공지능 반도체 설계 전문 기업인 리벨리온(Rebellions)의 박성현 대표가 ‘인공지능 반도체와 리벨리온의 여정’을 주제로 강연을 진행했다. 박성현 리벨리온 대표는 강연에서 &ldq
2024-11-12우리 대학이 삼성전자와 ‘130nm BCDMOS 공정 지원' 협약을 23일 오후 체결한다. 삼성전자가 반도체 설계 전문 인재 양성을 위해 지원하는 BCDMOS(복합고전압소자: Bipolar-CMOS-DMOS)*는 고전압과 고속 동작이 필요한 전력 관리 응용 분야에 적합한 공정이다. 이번 협약을 바탕으로 130nm(나노미터) BCDMOS 8인치 공정을 올해 하반기부터 도입해 국내 반도체 전공 석·박사 과정 학생에게 칩 제작 기회를 제공한다. 이를 위해, 우리 대학 반도체설계교육센터(소장 박인철, IC Design Education Center 이하 IDEC)는 130nm BCDMOS 공정을 위한 설계 전자설계자동화툴(EDA Tool)과 기술 지원 환경을 마련했다. IDEC은 삼성전자와 협력해 2021년부터 28nm 로직** 공정 칩 제작 기회를 학생들에게 제공하고 있으며, 지난해 28nm FD-SOI***공정 지원도 추가했다. 올해 제공된
2024-07-24과학기술정보통신부·정보통신기획평가원이 주관하는 PIM인공지능반도체 핵심기술개발사업의 지원을 받고있는 우리 대학 PIM반도체설계연구센터가 AI 반도체 전문인력 양성을 위해 전국 AI 및 반도체 관련 학과 학부생과 대학원생을 대상으로 SK하이닉스와 삼성전자의 PIM* 기반 이론 및 실습 교육을 진행했다. 강의는 6월 20일(목)부터 6월 21일(금)까지 SK하이닉스 교육, 7월 4일(목)부터 7월 5일(금)까지 삼성전자 교육을 각각 KAIST PIM반도체설계연구센터에서 진행했다. *PIM(Processing-In-Memory): 메모리 반도체에 연산 기능을 추가하여 AI와 빅데이터 처리 분야에서 데이터 처리 속도를 높이면서도 사용 전력을 줄이는 반도체 설계 기술 이번 교육은 SK하이닉스의 AiM*과 삼성전자의 HBM-PIM*을 활용하여 수강생들이 직접 실습할 수 있는 기회를 제공했다. 전국 25개 대학교에서 300명이 넘는 학생들이 접수하여 높은 관심을 받았다
2024-07-11우리 대학 전기및전자공학부 김이섭 교수 연구실의 박준영 석사졸업생이 6월 23일 ~ 6월 27일, 미국 샌프란시스코에서 개최된 국제 반도체 설계 자동화 학회 (Design Automation Conference, 이하 DAC) 에서 최우수 논문상(Best Paper Award)을 수상하는 성과를 거두었다. DAC은 1964년에 설립돼 올해 61회째를 맞은, 반도체설계자동화, 인공지능 알고리즘과 칩 설계 등을 포함하는 국제학술대회로서, 제출된 논문 중 상위 20퍼센트 정도만 선정하는, 관련 분야 최고 권위의 학회이다. 수상한 연구는 우리 대학 전기및전자공학부 졸업생 박준영 씨의 석사과정 졸업 논문에 기반한 것으로서, Large Language Model 모델 추론의 문제점이 되는 KV 캐싱의 메모리 전송을 줄이는 알고리즘 근사 기법과 하드웨어 아키텍처를 제안하였으며, 학회 best paper award 선정 위원회로부터 그 우수성을 인정받아 발표논문 337편 중 (제출논문
2024-07-02