< (왼쪽부터) 화학과 이효철 교수, 강재동 박사, 이윤범 박사, 이성곤 연수학생, 기호성 박사 >
눈에 보이지 않는 작은 분자 세계의 비밀이 밝혀졌다. 우리 대학 화학과 이효철 교수(기초과학연구원(IBS) 첨단 반응동역학 연구단장) 연구팀이 화학적 단결정 분자 내 구조 변화와 원자의 움직임을 실시간으로 관찰하는 데 성공했다.
물질을 이루는 기본 단위인 원자들은 화학결합을 통해 분자를 구성한다. 하지만 원자는 수 펨토초(1/1,000조 초)에 옹스트롬(1/1억 cm) 수준으로 미세하게 움직여 시간과 공간에 따른 변화를 관측하기 어려웠다. 분자에 엑스선을 쏴 회절 신호를 분석하는 엑스선 결정학(X-ray Crystallography)의 등장으로 원자의 배열과 움직임을 관찰하는 도구가 상당한 발전을 이뤘지만, 주로 단백질과 같은 고분자 물질에 대한 연구에 집중됐다. 비(非)단백질의 작은 분자 결정은 엑스선을 흡수하는 단면적이 넓고 생성되는 신호가 약해 분석이 어렵기 때문이다.
연구진은 선행 연구에서 단백질 내 화학반응의 전이상태와 그 반응경로를 3차원 구조로 실시간 규명한 바 있다. 이번 연구에서는 최초로 분자 단위 시스템에서 비단백질 분자의 구조 변화를 밝히는 데 성공하면서 분자 동역학 분야에 새로운 이정표를 세운 것으로 평가된다.
연구진은 수 펨토초의 순간에 변화하는 분자의 움직임을 포착하기 위해 포항가속기연구소의 엑스선 자유전자 레이저를 이용한 시간분해 연속 펨토초 결정학(time-resolved serial femtosecond crystallography, TR-SFX) 기법을 사용했다. 이 기법은 엑스선 자유전자 레이저에서 생성되는 펨토초 엑스선 펄스를 반응 중인 분자에 쏴 얻은 엑스선 회절 신호를 분석해 특정 순간 분자의 구조를 알아내는 방식이다.
< 그림 1. 금속-유기 골격체에 대한 시간분해 연속 펨토초 결정학 실험 구성도. 실험을 위해 금속–유기 골격체에 강렬한 펨토초 자외선 레이저 펄스를 조사해 광해리 반응을 유도했다. 엑스선 자유 전자 레이저 시설의 펨토초 엑스선 펄스로 펨토초 및 옹스트롬 시공간 분해능으로 금속–유기 골격체 내의 철 포르피린과 지르코늄 클러스터의 초고속 구조 변화를 직접 시각화할 수 있었다. 광 해리반응 후 금속–유기 골격체의 분자 구조는 시간에 따른 초고속 엑스선 펄스가 만들어내는 엑스선 회절 패턴을 측정함으로써 관찰됐다. >
공동 제1 저자인 이윤범 연구원은 “방대한 양의 엑스선 회절신호를 시간 순서대로 나열하면 원자의 움직임을 실시간으로 시각화할 수 있다”라며, “마치 분자의 초고속 변화를 영상으로 촬영하는 것과 같다”라고 설명했다.
실험을 위한 시료는 철 포르피린(Fe-porphyrin) 유도체와 지르코늄(Zr) 클러스터가 반복적으로 연결된 금속–유기 골격체에 일산화탄소(CO)가 흡착된 형태의 결정을 선택했다. 금속-유기 골격체는 금속 이온과 유기 분자가 연결돼 형성된 다공성 물질로, 다양한 구조적 기능, 가스 흡착 및 저장, 촉매활성 등의 특성으로 여러 산업 분야 응용에 주목 받는 물질이다.
< 그림 2. 중간체의 차이 전자 밀도 지도 및 세 구조중간체의 동역학. Iosc은 진동하는 구조에 대한 구조 중간체, Itr은 순간적으로 생성되는 구조 중간체이고 Ihot은 진동적으로 뜨거운 구조 중간체에 대한 SADED maps과 세 구조 중간체의 동역학을 의미한다. SADED maps의 맨 위 패널은 철 포르피린과 지르코늄 클러스터를 보여주며, 중간 패널은 지르코늄 클러스터의 지르코늄 원자를 확대해서 보여준다. 맨 아래 패널은 철 포르피린의 철 원자를 확대해서 보여주고 있다. 빨간색 차이 전자 밀도는 전자 밀도가 사라지는 것을 의미하며, 원자가 기존 위치에서 움직일 때 나타난다. 반대로, 파란색 차이 전자 밀도는 전자 밀도가 생성되는 것을 의미하며, 원자가 해당 위치로 움직일 때 나타난다. Iosc은 5.55 피코초 주기로 진동하며, 2.68 피코초로 제동되며, Itr은 200 펨토초인 IRF 내에 순간적으로 생성되고 47.1 피코초의 시간상수를 가지면서 사라진다. Ihot은 1.1 피코초와 11.32 피코초의 시간 상수를 가지면서 생성되며 3 나노초까지 유지되는 것을 관측했다. >
연구진은 이 시료에 강력한 자외선 레이저를 쏴 광해리 반응을 유도하고, 이후 펨토초 엑스선 펄스의 회절 신호를 분석했다. 그 결과, 광해리 반응으로 인해 철 포르피린에 흡착된 일산화탄소가 떨어져 나오며 세 가지의 주요한 구조로 변화하는 것을 밝혔다. 첫째는 5.55 피코초(1/1조 초) 주기로 진동하며, 2.68 피코초로 제동하는 철과 지르코늄 원자들의 집단 결맞음 진동 구조로의 변화다. 둘째는 철 포르피린의 철 이온이 포르피린 평면상에서 벗어나며 지르코늄 원자가 진동하는 구조다. 두 변화는 모두 200 펨토초 이내에 이뤄졌다. 마지막으로 온도 증가에 따라 철과 지르코늄 원자들의 무작위 진동 구조도 확인했다. 찰나의 순간, 분자의 역동적 구조 변화를 포착한 것이다.
< 그림 3. 금속-유기 구조체 내의 전반적인 구조동역학 모식도. 시간분해 연속 팸토초 결정학을 사용해 여러 분자 상태를 성공적으로 관찰했다. 첫째, Iosc은 5.55 피코초 주기로 진동하며, 2.68 피코초로 제동되는 철과 지르코늄 원자의 집단 진동 구조를 포착했다. 두 번째로 Itr은 200 펨토초인 IRF 내에 순간적으로 생성되고 47.1 피코초의 시간상수를 가지면서 사라지는 동안, 철 원자가 포르피린 평면 상에서 바닥상태보다 더 벗어나는 구조와 이에 따른 지르코늄 원자의 움직임을 포착했다. 마지막으로 Ihot은 1.1 피코초와 11.32 피코초의 시간 상수를 가지며 3 나노초까지 지속되었고, 이는 분자가 뜨거워질 때 일어나는 진동으로 인한 차이전자 밀도 지도의 특징을 보여준다. >
공동 제1 저자인 강재동 학생연구원은 “이번 연구는 분자 구조를 정확히 통제해 맞춤형 특성을 가진 새로운 물질을 설계하는 연구에 기초정보를 제공할 수 있을 것”이라며, “촉매, 에너지 저장 및 이산화탄소 포집, 약물 전달 등 다양한 연구 분야에 폭넓게 활용될 것으로 기대한다”라고 전했다.
연구를 이끈 이효철 교수는 “포항가속기연구소의 적극적 지원으로 화학적 단결정 분자의 구조 변화를 최초로 포착할 수 있었다”라며, “분자 단위 화학 시스템 연구를 위한 강력한 도구로서 시간분해 연속 펨토초 결정학의 잠재력을 확인했다”라고 말했다.
이번 연구 결과는 3월 25일 19시(한국시간) 국제학술지 ‘네이처 케미스트리(Nature Chemistry)’ 온라인 판에 게재됐다.
자연에서 일어나는 대부분의 화학 반응은 에너지적으로 안정한 형태를 취하는 방향으로 진행된다. 그렇기에 상대적으로 불안정한 구조를 가진 세큐린진 B의 합성은 매우 도전적인 과제다. 우리 연구진이 천연물 합성 원리를 바탕으로 빛으로 on/off가 가능한 분자 스위치 신소재 원천기술을 확보했다. 우리 대학 화학과 한순규 교수와 윤동기 교수 공동연구팀이 항암 및 퇴행성 뇌 질환 치료 효과로 학계의 꾸준한 관심을 받고있는 세큐리네가 알칼로이드 천연물 군에 속하는 세큐린진(securingine) B의 합성 방법을 세계 최초로 밝혀내고, 이 과정에서 발견한 화학적 반응성을 응용해 새로운 타입의 분자 광스위치를 개발했다고 11일 밝혔다. 한 교수 연구팀은 천연물 합성에 머무르지 않고 이 분자 재배열 원리를 바탕으로 서로 다른 파장의 빛을 통해 가역적으로 형태와 성질이 바뀌는 분자 광스위치를 고안했다. 천연물에 전자주개 치환기*를 달자 가시광선 영역의 빛을 흡수하면서, 무색인 기본 천
2024-11-11현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다. 우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다. 유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. *단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함 이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테
2024-11-07후쿠시마 오염수가 2023년부터 해양에 방류되면서 중수로 원전 운영 시 발생하는 대표적인 방사성 물질인 삼중수소에 대한 대중적 관심이 크게 늘어났다. 삼중수소는 주로 물 분자에 포함돼 존재하기 때문에 해양 생태계와 환경에 위험을 초래할 수 있어 삼중수소 제거 설비가 필요한데, 한국 연구진이 촉매를 이용해 획기적으로 제거할 수 있는 기술을 개발해 화제다. 우리 대학 생명화학공학과 고동연 교수 연구팀이 한국원자력연구원(원장 주한규) 박찬우 박사 연구팀과의 공동연구를 통해 원전 폐수에 함유된 삼중수소 제거 공정을 위한 새로운 구조의 이중기능* 소수성 촉매를 개발했다고 27일 밝혔다. 연구팀의 촉매는 특정 반응 조건에서 최대 76.3%의 반응 효율을 보였으며, 특히 현재까지 밝혀진 바가 거의 없는 수백 ppm 수준의 저농도 동위원소에 대한 촉매의 작용을 구체적으로 확인했다. *이중기능: 액체 상태의 물은 차단하고 기체 상태의 수증기는 통과하는 성질을 말함 현재 삼중수소 제거에
2024-08-27실시간으로 심박수를 측정할 수 있는 스마트 워치, 심장 박동수를 조절하는 페이스메이커 등 생체신호를 지속적으로 측정해 다양한 병을 진단하거나 치료할 수 있는 전자소자인 생체전자소자에 관한 연구가 활발히 진행되고 있다. KAIST 연구진이 생체조직 접촉 시 손상을 최소화하고 3D 마이크로니들 구조로 조직표면부터 심부까지 측정할 수 있는 전도성 하이드로젤 소재를 개발해 화제다. 우리 대학 신소재공학과 스티브 박 교수, 바이오및뇌공학과 박성준 교수 공동연구팀이 3D 프린팅을 통해 다양한 형태의 생체전자소자를 쉽고 빠르게 제작할 수 있는 전도성 고분자 기반 전극 물질을 개발했다고 7일 밝혔다. 이번 연구를 통해 기존 2D 전극 패터닝 기술로 접근하기 어려웠던 한계점을 극복해, 원하는 위치 및 심부 영역의 뇌 신경세포를 자극 및 측정할 수 있어, 뇌의 심부 영역에서 뇌의 활성화 원리를 정확하게 해석할 수 있을 것으로 기대된다. 또한 3D 프린팅을 통해 이 기술은 피부에 부착하는 헬스
2024-08-07지질 뗏목은 세포막 간 융합, 신호 전달, 바이러스 침투 등 세포 기능과 질병 발병의 핵심 과정에 중요한 역할을 한다. 한국 연구진이 지금까지 알려지지 않았던 지질 뗏목의 정렬 원인과 그 조절 메커니즘을 밝혀내어 세포막 간 상호작용을 조절하여 질병 치료에 새로운 접근법을 제공할 수 있을 것으로 기대된다. 우리 대학 바이오및뇌공학과 최명철 교수팀이 고등과학원(원장 최재경) 현창봉 교수팀, 포항가속기연구소(소장 강흥식) 이현휘 박사와 공동으로 세포막 간의 상호작용을 매개하는 지질 뗏목(Lipid Raft)의 정렬 현상의 원리를 최초로 규명했다고 5일 밝혔다. 세포 융합, 바이러스 침투, 세포 간 신호 전달 등 다양한 세포막 간의 상호작용을 조절할 수 있는 핵심 기전을 밝힌 것이다. 세포막(Cell membrane)은 세포의 내부와 외부를 구분하는 얇고 유연한 막으로, 지질 이중층(lipid bilayer)으로 구성돼 있다. 세포막에는 수많은 막단백질(membrane prote
2024-06-05