< (왼쪽부터) 전기및전자공학부 최신현 교수, 박시온 석박사통합과정, 홍석만 박사과정 >
우리 연구진이 공정 비용이 낮고 초저전력 동작이 가능하여 기존의 메모리를 대체하거나 차세대 인공지능 하드웨어를 위한 뉴로모픽 컴퓨팅(Neuromorphic Computing) 구현에 사용될 메모리 소자를 개발하여 화제다.
전기및전자공학부 최신현 교수 연구팀이 디램 (DRAM) 및 낸드(NAND) 플래시 메모리를 대체할 수 있는 *초저전력 차세대 상변화 메모리 소자를 개발했다고 4일 밝혔다.
☞ 상변화 메모리(Phase Change Memory): 열을 사용하여 물질의 상태를 비정질과 결정질을 변경하여, 이를 통해 저항 상태를 변경함으로써 정보를 저장하거나 처리하는 메모리 소자.
기존 상변화 메모리는 값비싼 초미세 반도체 노광공정을 통해 제작하며 소모 전력이 높은 문제점이 있었다. 최 교수 연구팀은 상변화 물질을 전기적으로 극소 형성하는 방식을 통해 제작한 초저전력 상변화 메모리 소자로 값비싼 노광공정 없이도 매우 작은 나노미터(nm) 스케일의 상변화 필라멘트를 자체적으로 형성하였다. 이는 공정 비용이 매우 낮을 뿐 아니라 초저전력 동작이 가능하다는 획기적인 장점이 있다.
현재 널리 사용되고 있는 메모리인 디램(DRAM)은 속도가 매우 빠르지만, 전원이 꺼지면 정보가 사라지는 휘발성 특징을 갖고 있으며, 저장장치로 사용되는 낸드 플래시 메모리는 읽기/쓰기 속도는 상대적으로 느린 대신 전원이 꺼져도 정보를 보존하는 비휘발성 특징을 갖고 있다.
이에 반해, 상변화 메모리는 디램과 낸드 플래시 메모리의 장점을 모두 가진 차세대 메모리로, 빠른 속도와 비휘발성 특성을 동시에 지닌다. 이러한 이유로, 상변화 메모리는 기존의 메모리를 대체할 수 있는 차세대 메모리로 각광받으며, 메모리 기술 또는 인간의 두뇌를 모방하는 뉴로모픽 컴퓨팅 기술로 활발히 연구되고 있다.
< 그림 1. 본 연구에서 제작한 초저전력 상변화 메모리 소자 개념도, 그리고 기존 상변화 메모리 소자 대비 초저전력 상변화 메모리 소자의 소비 전력 감소 비교. >
그러나 기존 상변화 메모리는 소비 전력이 매우 높아서 실용적인 대용량 메모리 제품 및 뉴로모픽 컴퓨팅 시스템을 구현하기에는 어려움이 있다. 기존 연구는 메모리 동작을 위한 발열 효과를 높이기 위해 초미세 반도체 노광공정을 이용해 소자의 물리적 크기를 줄여 소비 전력을 낮추는 연구가 진행됐으나, 소비 전력 개선 정도가 작고 공정비용과 공정 난이도가 증가해 실용성 측면의 한계점이 존재했다.
최신현 교수 연구팀은 이러한 상변화 메모리의 소비 전력 문제를 해결하기 위해, 상변화 물질을 전기적으로 극소 형성하는 방식으로 기존의 값비싼 초미세 노광공정을 이용한 상변화 메모리 소자보다 소비 전력이 15배 이상 작은 초저전력 상변화 메모리 소자 구현에 성공했다.
최신현 교수는 "이번에 개발한 초저전력 상변화 메모리 소자는 기존의 연구 방향과는 완전히 다른 방식으로 기존에 풀지 못하였던 큰 숙제인 제조비용과 에너지 효율을 대폭 개선한 소자를 개발했다는 의의가 있다. 또한 물질 선택이 자유로워 고집적 3차원 수직 메모리 및 뉴로모픽 컴퓨팅 시스템 등 다양한 응용을 가능케 하는 등 미래 전자공학의 기반이 될 것으로 기대한다ˮ며 이번 연구가 앞으로 뻗어나갈 새로운 분야에 대한 강한 자신감을 피력했다. 또한 "이 연구를 지원한 한국연구재단 및 나노종합기술원에 감사드린다ˮ라고 말했다.
전기및전자공학부 박시온 석박사통합과정, 홍석만 박사과정이 제1 저자로 참여한 이번 연구는 저명한 국제 학술지 `네이처(Nature)' 4월호에 4월 4일 자 출판됐다. (논문명 : Phase-Change Memory via a Phase-Changeable Self-Confined Nano-Filament)
한편 이번 연구는 한국연구재단 차세대 지능형반도체기술개발사업, PIM인공지능반도체핵심기술개발(소자)사업, 우수신진연구, 그리고 나노종합기술원 반도체공정기반 나노메디컬 디바이스개발 사업의 지원을 받아 수행됐다.
최근 인간의 뇌를 모방해 하드웨어 기반으로 인공지능 연산을 구현하는 뉴로모픽 컴퓨팅 기술이 최근 주목받고 있다. 뉴로모픽 컴퓨팅의 단위 소자로 활용되는 멤리스터(전도성 변화 소자)는 저전력, 고집적, 고효율 등의 장점이 있지만 멤리스터로 대용량 뉴로모픽 컴퓨팅 시스템을 구현하는데 불규칙한 소자 특성으로 인한 신뢰성 문제가 발견되었다. 우리 연구진이 뉴로모픽 컴퓨팅의 상용화를 앞당길 신뢰성 향상 기술을 개발하여 화제다. 우리 대학 전기및전자공학부 최신현 교수 연구팀이 한양대학교 연구진과의 공동 연구를 통해 차세대 메모리 소자의 신뢰성과 성능을 높일 수 있는 이종원자가 이온* 도핑 방법을 개발했다고 21일 밝혔다. * 이종원자가 이온(Aliovalent ion): 원래 존재하던 원자와 다른 원자가(공유 결합의 척도, valance)를 갖는 이온을 말함 공동연구팀은 기존 차세대 메모리 소자의 가장 큰 문제인 불규칙한 소자 특성 변화 문제를 개선하기 위해, 이종원자가 이온을
2024-06-21우리 연구진이 현재 반도체 산업체에서 사용되는 실리콘 소재 및 공정만을 사용해 초소형 진동 신경망을 구축하여 경계선 인식 기능을 구현했으며 난제 중 하나인 그래프 색칠 문제*를 해결했다. *그래프 색칠 문제: 그래프 이론에서 사용되는 용어로, 그래프의 각 정점에 서로 다른 색을 할당해야 하며, 이러한 색깔 구분 문제는 방송국 주파수가 겹쳐 난시청 지역이 발생하지 않도록 주파수를 할당하는 문제 등과도 유사해 다양하게 응용되고 있음 우리 대학 전기및전자공학부 최양규 교수 연구팀이 실리콘 바이리스터 소자로 생물학적 뉴런의 상호작용을 모방한 뉴로모픽 진동 신경망을 개발했다고 3일 밝혔다. 빅데이터 시대가 도래하면서 인공지능 기술이 예전과 비교할 수 없을 만큼 비약적으로 발전하고 있다. 인간의 뇌 기능을 모사하는 뉴로모픽 컴퓨팅 중 하나인 상호 간 결합된 진동 신경망(oscillatory neural network)은 뉴런의 상호작용을 모방한 인공 신경망이다. 진동 신경망은 기
2024-04-03최근 인간의 뇌를 모방한 뉴로모픽 반도체 소자 연구가 주목받고 있다. 이에서 더 나아가 최근에는 뇌를 넘어 첨단 센서와 휴머노이드 분야에 적용가능한 감각신경계 모사에 관한 연구가 활발하게 진행되고 있다. 우리 대학 신소재공학과 김경민 교수 연구팀이 새로운 메모리 소자인 멤리스터를 사용하여 통증자극 민감도 조절 기능을 갖는 뉴로모픽 통각수용체 소자를 최초로 구현했다고 15일 밝혔다. ※ 멤리스터(memristor): 메모리(memory)와 저항(resistor)의 합성어로, 전류의 흐름에 따라 저항이 변화하는 전자소자 감각신경계의 핵심적인 역할 중 하나는 유해한 자극을 감지해 위험한 상황을 회피하는 것이다. 특히 통각수용체는 자극이 민감도의 임계치를 넘으면 통증 신호를 발생하여 인체가 자극에서 회피할 수 있도록 한다. 이를 위해 통각수용체의 신호 전달에는 통증 신호를 전달하는 흥분성 신경전달물질(Excitatory Neurotransmitter)과 외부 자극에 대한
2023-11-15우리 대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다. ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발(2021년 Science Advances 게재)하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다. 전기및전자공학부 졸업생 한준규 박사, 전기및전자공학부 이정우 박사과정과 김예은 박사과정, 그리고 신소재공학과 김영빈 박사과정이 공동 제1저자로 참여한 이번 연구는 저명 국제 학술지 ‘Advanced Science’ 2023년 9월 온라인판에 출판됐다. (논문명 : 3D Neuromorphic Hardware with Single T
2023-09-21우리 대학 전기및전자공학부 최양규 교수, 기계공학과 박인규 교수 공동 연구팀이 ‘생물의 후각 뉴런을 모방한 단일 뉴로모픽 소자’을 개발하는 데에 성공하였다고 밝혔다. 과거‘인간의 후각을 모방한 뉴로모픽 모듈'을 개발하는 데에 성공했던 연구팀은, 기존에 센서와 뉴런 소자가 분리되어 별도 센서의 신호를 받아 스파이크 출력을 했던 뉴로모픽 모듈에서 한 층 더 발전된, 단일 소자만으로 가스 감지 및 스파이크 신호 출력이 가능한 뉴로모픽 소자를 개발하였다. 이상원 박사과정이 제 1저자로 참여하고 강민구 박사과정이 공동저자로 참여한 이번 연구는 저명 국제 학술지 ‘Cell’ 자매지인 ‘Device’에 2023년 9월 온라인판에 정식 출판됐다. (논문명 : An Artificial olfactory sensory neuron for selevtive gas detection with in-sensor computi
2023-09-12