< 김재철AI대학원 정송 원장이 개회사를 실시하고 있다. >
우리 대학 김재철AI대학원(원장 정송)은 지난 5월 2일(목) 서울 COEX에서 ‘KAIST 김재철AI대학원 AI기술설명회 2024’(공동주최: 성남산업진흥원, 서울특별시)를 열었다. 본 행사는 KAIST 김재철AI대학원에서 연구개발 중인 최신 AI기술을 일반 참관객 및 산업계 종사자에게 홍보하여 AI기술 확산에 기여하기 위해 마련됐다. 이번 설명회에는 약 650여명이 참석하여 KAIST에서 연구 중인 AI기술에 대한 큰 관심을 확인할 수 있었다.
오전 프로그램으로는 최근 관심이 높은 AI기술 분야에 대한 초청 강연을 진행했다. 최근 산업계의 주요 관심사인 ‘기업용 대형언어모델(LLM) 도입과 활용 전략’을 주제로 장동인 교수(KAIST 김재철AI대학원)가 강연했고, ‘AI와 로봇의 만남: 로봇러닝의 현재와 미래’라는 제목으로 임재환 교수(KAIST 김재철AI대학원)가 로봇러닝 분야의 연구동향과 성과를 설명했다. 이어서 문성은 리더(네이버 클라우드)가 헬스케어AI 기술동향에 대해 발표했으며, 해당 강연에는 카이스트-네이버 초창의 AI 연구센터(Hyper-Creative AI Research Center)에서 수행한 헬스케어AI 관련 공동연구 내용도 소개됐다.
< 김재철AI대학원 임재환 교수가 강연하고 있다. >
오후 세션에서는 김재철AI대학원의 각 연구실이 보유한 다양한 AI 분야 기술과 최신 연구성과 발표가 이어졌다. 보유기술 소개 1부에서는 LLM, 딥러닝 알고리즘, 로봇 분야에 대한 기술발표가 있었다. ▲생성형 AI 평가 기술(서민준 교수, KAIST 김재철AI대학원, 이하 발표자 소속 동일) ▲데이터/자원 효율적 언어모델 선호 최적화 알고리즘(홍지우 연구원, James Thorne 교수) ▲생성형 언어모델을 사용한 정형 데이터 오버샘플링 기법(양준용 연구원, 양은호 교수) ▲대규모 딥러닝 모델을 위한 베이지안 딥러닝 기법(김현수 연구원, 이주호 교수) ▲로봇에게 물체 조작과 인지 능력 부여하기(김범준 교수) ▲병렬 디코딩을 활용한 자기회귀 언어모델의 빠르고 강건한 조기 추론 프레임워크(배상민 연구원, 윤세영 교수) 등이 소개되었다.
보유기술 소개 2부에서는 ▲실제 환경에서 사실적인 가상 착용을 위한 디퓨전 모델 개선(최이솔 연구원, 신진우 교수) ▲컴퓨터 비전 분야 영상 합성 및 변환 기술(황성원 연구원, 주재걸 교수) ▲전자건강기록 및 흉부 엑스레이 데이터베이스에 대한 멀티모달 질의응답 기술(배성수 연구원, 최윤재 교수) ▲딥러닝 모델이 학습한 특징 이해를 통한 AI 의사결정 설명기술(권다희 연구원, 최재식 교수) ▲안드로이드 모바일 기기 제어 에이전트의 다양한 기기 환경에서의 벤치마킹 연구(이주용 연구원, 이기민 교수) 등 컴퓨터 비전, 헬스케어 AI, 설명가능 인공지능(XAI) 및 에이전트 분야에 대한 최신 기술 소개 및 시연이 있었다.
본 기술설명회를 주관한 김재철AI대학원 정송 원장은 “AI엑스포에 참가한 일반대중과 산업계 종사자들에게 우리 대학원이 보유한 글로벌 수준의 최신 AI기술을 널리 알려 국내 기업들이 AI 기반 혁신을 추진하는 데에 앞장서겠다.”고 밝혔다.
행사 종료 후 김재철AI대학원이 보유한 기술에 대한 기술이전이나 공동연구에 관심이 있는 기업들은 KAIST 성남연구센터를 통해 기술상담 신청을 할 수 있다.
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21우리 대학이 국내 대학으로서는 최초로 단독 보안 학술대회 ‘Security@KAIST Fair’를 오는 26일 개최한다. 정보보호대학원(책임교수 차상길)은 미 컴퓨터과학분야 평가사이트인 csrankings.org 기준 세계 20위권의 보안 연구 실적을 확보한 명실공히 국내 최고의 보안 연구 기관으로 평가받고 있으며, 본 학술대회를 통해 KAIST가 연구개발 중인 세계적인 수준의 최첨단 보안기술을 대외적으로 소개하는 자리를 마련했다. 이번 행사는 KAIST 정보보호대학원과 사이버보안연구센터가 주관하며, KAIST 내부에서 진행 중인 50개 이상의 프로젝트 발표와 5건의 기술 세미나, 그리고 다양한 보안 데모가 진행된다. 특히 아직 발표되지 않은 프로젝트가 다수 발표되어 보안 기술의 최신 동향을 한눈에 확인할 수 있는 자리가 될 전망이다. 또한 KAIST 정보보호대학원을 졸업하고 국내외에서 활동중인 졸업생과의 대화 자리를 마련하여 보안 분야에서의 취업과
2024-11-12우리 대학이 12일(화) 오전 대전 인터시티호텔에서 ‘제1회 한국인공지능시스템포럼(이하 KAISF) 조찬 강연회’를 개최했다. 이는 우리 대학 인공지능반도체대학원이 AI 기술에 관련 미래와 혁신 등에 대해 다양한 분야의 전문가들이 함께 논의하는 장을 열고자 추진됐다. 총 77명의 전문가가 참석한 이번 행사에는 이광형 총장, 홍진배 정보통신기획평가원장, 방승찬 한국전자통신연구원장 등이 축사를 전했다. 이어서 ▲칩렛 이종 집적 첨단 패키지 기반 페타플롭스급 고성능 PIM 설계(한진호 한국전자통신연구원 PIM인공지능반도체연구실장) ▲자율주행·자율 행동체 연구개발사업 소개(최정단 한국전자통신연구원 모빌리티로봇연구본부장)에 대해 발표했다. 이후 인공지능 반도체 설계 전문 기업인 리벨리온(Rebellions)의 박성현 대표가 ‘인공지능 반도체와 리벨리온의 여정’을 주제로 강연을 진행했다. 박성현 리벨리온 대표는 강연에서 &ldq
2024-11-12최근 건강에 관한 관심이 점차 커지면서 일상생활에서 스마트 워치, 스마트 링 등을 통해 자기 신체 변화를 살펴보는 일이 보편화되었다. 그런데 기존 헬스케어 앱에서는 걷기에서 뛰기로 갑자기 변화를 줄 경우는 잘 측정이 되지만 천천히 속도를 높이는 경우는 측정이 안 되는 현상이 발생했다. 우리 연구진이 완만한 변화에도 동작을 정확하게 파악하는 기술을 개발했다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 착용 기기 센서 데이터에서 사용자 상태 변화를 정확하게 검출하는 새로운 인공지능 기술을 개발했다고 12일 밝혔다. 보통 헬스케어 앱에서는 센서 데이터를 통해 사용자의 상태 변화를 탐지하여 현재 동작을 정확히 인식하는 기능이 필수이다. 이를 변화점 탐지라 부르며 다양한 인공지능 기술이 변화점 탐지 품질을 향상하기 위해 적용되고 있다. 이재길 교수팀은 사용자의 상태가 급진적으로 변하거나 점진적으로 변하는지에 관계없이 정확하게 잘 동작하는 변화점 탐지 방법론을 개발했다.
2024-11-12우리 대학 문술미래전략대학원 전우정 교수가 우리나라 법학자 최초로 세계 최고 과학 학술지인 네이처(Nature)의 자매지 ‘네이처 일렉트로닉스(Nature Electronics)'의 코리스판던스(Correspondance) 섹션에 군사 AI 통제의 과학적 도전에 관한 기고문을 게재했다고 8일 밝혔다. 지난 9월 9일부터 10일까지 서울에서 개최된 ‘2024 인공지능(AI)의 책임 있는 군사적 이용에 관한 고위급 회의(REAIM 2024)'에서 군사 AI 거버넌스에 중요한 진전이 이뤄졌다. 우리나라 뿐만 아니라 네덜란드, 싱가포르, 케냐, 영국이 공동 주최국으로 참여한 이 회의에서 미국, 독일, 프랑스, 일본 등 61개국이 ‘행동을 위한 청사진(Blueprint for Action)'을 채택했다. 이후 두 개 국가가 추가로 동참해 현재 총 63개국이 채택하고 있다. 전우정 교수는 이번 기고문에서 군사 분야의 AI 활용에 대한 이러한 원칙들을
2024-11-08