< (왼쪽부터) 기계공학과 이강택 교수, 신소재공학과 정우철 교수, KIER 이찬우 박사, 전남대 송선주 교수 >
< (왼쪽부터) 기계공학과 김동연 박사과정, 정인철 박사, 신소재공학과 안세종 박사과정 >
온실가스 배출량을 '0'으로 만드는 글로벌 약속 '탄소중립(Net-zero)' 달성을 위해 탄소 배출을 줄이는 수소 에너지의 활용 및 생산은 선택이 아닌 필수적인 요소로 부상하고 있다. 이를 위한 에너지 변환 기술 중 고효율 전력 변환 및 그린수소 생산이 가능한 프로토닉 세라믹 전기화학전지(PCEC)가 미래 수소 에너지 사회를 촉진할 차세대 기술로 주목받고 있다.
우리 대학 기계공학과 이강택 교수, 신소재공학과 정우철 교수, 한국에너지기술연구원 이찬우 박사, 전남대학교 송선주 교수 공동 연구팀이 프로토닉 세라믹 전기화학전지의 산화물 전극 결정구조 제어를 통해 양성자 확산경로를 2차원에서 3차원으로 확장하는 데 성공해 전극의 촉매활성을 크게 향상시켰다고 14일 밝혔다.
비대칭 구조를 갖는 페로브스카이트 산화물계 전극은 구조적인 한계로 인해 양성자의 격자 내 이동이 제한으로 촉매 활성이 낮아 연료전지의 성능이 낮아진다는 문제점이 있었다. 연구팀은 이를 해결하기 위해, 이종 금속원소 후보군을 선정 및 도핑해 격자내에서 양성자가 이동하기 어려운 비대칭 구조를 성공적으로 대칭 구조화하여 양성자 수송 특성을 극대화 하였고, 이를 통해 고성능 전극 설계에 대한 단초를 마련했다. 또한 연구팀은 계산화학*을 통해 전극의 결정구조가 양성자 수송 특성에 미치는 영향에 대한 상관관계를 규명했다.
*계산화학: 컴퓨터를 이용해 화학 시스템의 구조와 반응성을 이론적으로 모델링하고 예측하는 학문
연구팀이 개발한 전극 소재는 프로토닉 세라믹 전기화학전지에 적용돼 현재까지 보고된 소자 중 가장 뛰어난 전력 변환 성능(650도에서 3.15 W/cm2)을 보이며 생산 과정 중 이산화탄소가 배출되지 않는 그린수소 또한 높은 생산 성능(650도에서 시간당 약 770 ml/cm2)을 보였다. 500시간의 장시간 구동 후에 가역 구동(전력 및 그린수소를 교대로 생산)에서도 안정적인 성능을 보여, 제시한 전극 설계 방법의 우수성이 입증됐다.
< 그림 1. 이종원소 도핑을 통한 결정구조 제어로 확장된 양성자 확산 경로 >
이강택 교수는 “이번 연구에서 제안한 전극 설계 기법이 프로토닉 세라믹 전기화학전지의 고성능 전력/그린수소 생산에 대한 새로운 방향성을 제시할 것으로 기대되며, 이 기술이 글로벌 넷제로 달성을 위한 수소 생산 및 친환경 에너지 기술 상용화에 촉매제가 될 수 있을 것”이라고 말했다.
< 그림 2. 본 연구에서 설계한 전극 적용 PCEC와 기존 연구들과의 비교 >
우리 대학 기계공학과 김동연 박사과정, 정인철 박사, 신소재공학과 안세종 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 에너지·재료 분야의 세계적 권위지인 ‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:27.8)’에 지난 4월 12일 字 후면표지(Back cover) 논문으로 게재됐다. (논문명: On the Role of Bimetal-Doped BaCoO3-���� Perovskites as Highly Active Oxygen Electrodes of Protonic Ceramic Electrochemical Cells)
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 이공분야기초연구사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
< 그림 3. 논문 표지 이미지 >
스마트 섬유(smart textile)는 기존의 섬유에 디지털 정보 기술이 결합된 신개념 미래형 섬유를 뜻한다. 현재까지 개발된 기능성 나노섬유 제조 공정은 다양한 물질로 제조가 어렵다는 한계점이 존재하여 고성능 스마트 섬유를 구현하기 위해서는 나노물질의 우수한 전기적 특성과 기계적 유연성이 확보된 기능성 금속/세라믹 나노섬유의 개발이 필수적이었다. 우리 대학 기계공학과 박인규 교수가 고려대학교 세종캠퍼스 안준성 교수, 한국원자력연구원 정용록 박사, 한국기계연구원 정준호 박사와 공동연구를 통해 `스마트 섬유용 금속/세라믹 나노리본 얀* 제조 기술'을 개발했다고 8일 밝혔다. *얀(yarn): 천연 또는 합성 섬유를 길이의 방향으로 나란히 해 꼬임을 주어서 긴 형태로 만든 연속적인 가닥 구조를 갖는 실을 뜻하며, 뜨개질, 직조 등에 사용되는 실에서 흔히 찾아볼 수 있음 기존의 섬유에 전도성 나노 물질을 코팅해 스마트 섬유로 발전시켜 왔지만 스마트 섬유의 응용 분야 다양성
2024-05-08연료전지란 청정에너지원인 수소를 이용해 고효율로 전력을 생산하는 장치로, 다가오는 수소 사회에서 중요한 역할을 하는 기술로 여겨진다. 차세대 연료전지에 모두 적용 가능하고 기존에 비해 700시간 구동에도 끄떡없는 우수한 전극 소재가 개발되어 화제다. 우리 대학 신소재공학과 정우철, 기계공학과 이강택 교수와 홍익대학교 김준혁 교수 공동 연구팀이 산소 이온 및 프로톤 전도성 고체산화물 연료전지에 모두 적용 가능한 전극 소재 개발에 성공했다고 9일 밝혔다. 세라믹 연료전지는 전해질로 이동하는 이온의 종류에 따라 산소 이온 전도성 고체산화물 연료전지(SOFC)와 프로토닉 세라믹 연료전지(PCFC) 2가지로 나뉜다. 또한, 두 형태에 대해 모두 전력과 수소 간의 변환이 가능하므로 총 네 가지 소자로 구분될 수 있다. 해당 소자들은 수소전기차, 수소 충전소, 발전 시스템 등에 활용할 수 있는 탄소중립 사회를 위한 차세대 핵심 기술로 떠오르고 있다. 하지만, 이러한 소자들은 구동 온
2023-08-09우리 대학 기계공학과 이강택 교수 연구팀이 마이크로파를 이용한 초고속 소결 공정을 통해 고성능 프로토닉 세라믹 연료전지(PCFC) 개발에 성공했다고 3일 밝혔다. 기존의 산소 이온 전도성 고체 산화물 연료전지(SOFC)와 달리, 프로토닉 세라믹 연료전지는 양성자 전도성 세라믹 전해질의 높은 이온 전도도와 낮은 활성화 에너지 특성으로 인해, 600oC 이하 저온에서 고효율로 전력 변환 및 수소 생산이 가역적으로 가능한 에너지 변환 시스템으로 이는 수소전기차, 수소 충전소, 건물 및 선박용 발전시스템 등에 활용이 가능한 탄소중립 사회를 위한 차세대 핵심 기술로 떠오르고 있다. 이러한 프로토닉 세라믹 연료전지는 난소결성 바륨 기반 산화물 전해질을 사용하는데, 이를 치밀화하기 위해서 1,500oC 이상 고온에서 장시간 소결(세라믹 입자를 가열하여 단단하게 결합시키는) 공정이 필수적이다. 하지만, 이러한 극한 공정 중에 산화물 내부에서 발생하는 양이온 확산으로 화학적 조성이 불안정
2022-08-03우리 대학 신소재공학과 염지현 교수 연구팀이 광대역 광학 활성을 갖는 *카이랄 세라믹 물질을 최초로 개발했다고 30일 밝혔다. 신소재공학과 박기현 석사과정이 제1 저자로 참여한 이번 연구는 미국화학회가 발행하는 국제 학술지 ‘ACS 나노(ACS Nano)’에 개재됐다. (논문명 : Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale) ☞ 카이랄(Chiral): 수학, 화학, 물리학, 생물학 등 다양한 과학 분야에서 비대칭성을 가르키는 용어중 하나다. 이는 어떤 대상의 모양이 거울에 비춘 모양과 일치되지 않을 때 카이랄 성이 존재한다고 일컫는다. 카이랄 나노물질은 입사하는 원형 편광의 오른쪽 또는 왼쪽 방향성에 따라 다른 광학적 성질을 보이는 광학 활성도(chiroptical activi
2021-10-01언택트(비대면) 시대를 맞아 가상현실(VR)과 증강현실(AR) 기술을 통한 소통의 필요성이 증가함에 따라 인간의 오감(五感, five senses)을 전자기기를 통해 구현 및 측정하는 기술의 연구 역시 가속화되고 있다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 촉감이나 촉각 증강기술에 활용이 가능하도록 3D 나노 구조체를 활용해 탄성 변형률이 3배로 향상된 압전 세라믹 소재를 개발했다고 2일 밝혔다. 전자기기와 상호작용하는 기술에 관한 사람들의 관심이 꾸준히 높아지는 추세를 감안한다면 특히 인간의 일반적인 자극인지 방식을 고려할 때, 사용자에게 2개 이상의 복합 감각이 제공되면 전자기기와 더욱 자연스럽게 상호작용을 할 수 있다. 따라서 최근 들어 시각 및 청각보다 상대적으로 발전이 더딘 촉감 구현 및 증강 기술이 주목을 받고 있다. 촉각 증강 기술은 의료용 로봇을 주축으로 한 로봇 기술뿐만 아니라 촉각을 통해 정보를 전달하는 햅틱 디스플레이, 햅틱 장갑 등 정보 전달 기
2020-12-02