우리 대학 설명가능인공지능 연구센터(센터장 최재식)가 'KCC 설명가능 인공지능(XAI) 워크숍 2024'를 지난달 27일 제주 국제컨벤션센터에서 개최했다.
올해 3월 EU의 인공지능법이 최종 통과된 후 인공지능 시스템에 대한 글로벌 규제가 현실화 되고 인공지능 모델의 투명성 향상과 규제 준수를 지원할 수 있는 설명가능 인공지능(eXplainable Artificial Intelligence, 약칭 XAI) 기술에 대한 관심이 높아지고 있다. 이와 같은 시대적 흐름에 대응하기 위해 개최된 이번 워크숍에는 관련 분야에서 활발히 연구 중인 국내 연구기관과 기업 관계자들이 교류하며 최신 연구 동향을 공유했다.
서홍석 교수(고려대)와 박천음 교수(한밭대)는 각각 '멀티모달 대화형 인공지능 관련 연구 동향'과 'Multimodal Counterfactual reasoning을 이용한 자연어 해석 연구 동향'을 주제로 최근 활발한 연구가 진행 중인 멀티모달 인공지능 모델 연구 및 해석 동향을 강연했다.
또한, 오순영 공동의장((사)과실연 미래포럼)은 '금융 및 은행에서의 설명가능 인공지능'을 주제로 금융 및 의료 분야에 설명가능 인공지능이 활용된 사례를 발표하고 김진우 대표(㈜HAII)의 '디지털 헬스에서의 설명가능 인공지능의 역할: 리피치* 사례를 중심으로' 강연이 진행됐다. *리피치(Repeech): 마비말장애 디지털 치료기기
이와 함께, 설명가능 인공지능 분야의 국제 표준화 그룹 리더인 이재호 교수(서울시립대)가 '프론티어 인공지능 신뢰성 기술과 정책'에 대해 발표했다.
이번 워크숍에서는 총 38편의 최신 연구논문이 발표됐다. 기존 설명가능 인공지능 알고리즘의 성능을 개선한 새로운 알고리즘, 대형언어모델(Large Language Model, 약칭 LLM) 등 생성형 AI모델에 대한 해석성 및 신뢰성 제공 기법, 도메인별 XAI 적용 사례에 대한 연구 내용이 소개됐다.
최우수논문상은 우리 대학 전기및전자공학부 노용만 교수팀(이병관, 박범찬, 김채원)의 '물체 수준 시각 프롬프트를 활용한 효율적인 대형언어시각모델'이 수상했다. 대형언어시각 모델(Large Language and Vision Model, LLVM)에서 모델 크기를 키우는 대신 물체 수준 이미지에서 이해가 가능한 새로운 기법을 도입해 인공지능 모델 성능을 향상시켰을 뿐만 아니라 인공지능 모델의 의사결정 과정에 대한 해석가능성을 크게 높였다는 점을 인정받았다.
행사를 주관한 설명가능인공지능 연구센터 최재식 센터장은 "이번 워크숍이 인공지능 기술의 투명성과 신뢰성을 높이는 데 중요한 역할을 하는 설명가능 인공지능(XAI)에 대한 최신 연구 동향을 교류하는 구심점이 되어, 다양한 산업 분야에 설명가능 인공지능(XAI) 기술을 적용하는 계기가 되길 바란다"라고 밝혔다.
이번 행사는 정보통신기획평가원의 '사람중심 인공지능 핵심원천기술개발사업(과제명: 사용자 맞춤형 플러그앤플레이 방식의 설명가능성 제공 기술 개발)' 지원으로 개최되었다. 이번 워크숍에 대한 자세한 정보는 우리 대학 설명가능 인공지능센터 홈페이지에서 확인할 수 있다.(https://xai.kaist.ac.kr/xai-workshop/2024/)
우리 대학이 ‘대학 연구보안교육 협의회 워크숍’을 10일(목) KAIST 대전 본원에서 개최한다. 올해로 3년 차를 맞은 이번 워크숍은 대학의 연구 보안을 더욱 강화하기 위해 연구보안교육 혁신 성과를 공유하고 다양한 현장 의견을 청취하고자 마련됐다. 이날 열리는 행사에는 KAIST 등 과기특성화대학, 이화여대 등 57개 대학과 국가과학기술인력개발원(이하 KIRD), 한국과학기술기획평가원(이하 KISTEP) 관계자 등 100명이 참석한다. 우리 대학은 ‘찾아가는 연구실 보안컨설팅 사업(이하 보안컨설팅)’ 시행 성과와 ‘랩매니저(랩장) 연구보안교육’ 프로그램을 소개한다. 그리고 최근 개정된 ‘KAIST 연구보안 관리지침’ 사례를 통해 연구보안 규정의 정비·개선 방안을 발표한다. KIRD는 온라인 플랫폼을 통한 연구보안교육 콘텐츠 성과를 소개하고, 온라인 플랫폼을 활용하고자 하는
2024-10-10우리 대학 신소재공학과 김경민 교수 연구팀이 다양한 멤리스터* 소자를 이용한 설명 가능한 인공지능 (XAI) 시스템을 구현하는데 성공했다고 25일 밝혔다. *멤리스터 (Memristor): 메모리 (Memory)와 저항 (Resistor)의 합성어로, 입력 신호에 따라 소자의 저항 상태가 변하는 소자 최근 인공지능 (AI) 기술의 급속한 발전이 다양한 분야에서 성과를 이루고 있다. 이미지 인식, 음성 인식, 자연어 처리 등에서 AI의 적용 범위가 확대되며 우리의 일상생활에 깊숙이 자리 잡고 있다. AI는 인간의 뉴런 구조를 모방해 만든 ‘인공신경망’을 기반으로, 적게는 수백만 개에서 많게는 수조 개에 달하는 매개변수를 통해 데이터를 분석하고 의사 결정을 내린다. 그러나 이 많은 매개변수로 인해 AI 모델의 동작 원리를 정확하게 이해하기 어렵고, 이는 통상적으로 블랙박스에 비유되곤 한다. AI가 어떤 기준으로 결정을 내는지 알 수 없다면, AI에 결함이나
2024-03-25우리 대학 중소기업R&D공유센터(센터장 장영재)가 '중소기업 기술혁신을 위한 산학협력 전략과 사례' 워크숍을 지난 21일 파크하얏트 부산에서 개최했다. 중소기업R&D공유센터는 과학기술정보통신부 지원으로 2021년 개소했다. 4대 과기원(KAIST·GIST·DGIST·UNIST)에 재직 중인 24명의 교수와 84명의 연구원이 43개 기술혁신형 중소기업과 장기적인 팀을 이루어 6개 기술 분과를 구성했다. 이들은 연구실 전략기술 로드맵 개발, 기술이전 및 사업화, 기술 자문, 기술개발 사업 제안서 작성, 교육, 시험분석 장비 지원 등을 꾸준히 수행해 왔다.지난 3년간의 중소기업 기술혁신 및 활성화를 위해 노력한 결과를 돌아보고, 산학연 플랫폼으로써 한 단계 도약하는 방안을 논의하기 위해 마련된 이날 행사에는 4대 과기원의 우수 연구진과 파트너 중소기업 관계자 등 30여 명이 참석했다.참석자들은 기존의 네트워크를 기반으로 향후 산학
2023-12-29우리 대학은 '대학 연구보안교육 협의회 워크숍'을 오는 18일 KAIST 대전 본원에서 개최했다. 첨단 과학기술이 국가의 경쟁력을 좌우하는 글로벌 기술패권 시대가 본격적으로 대두되며, 세계 각국은 자국의 첨단기술 보호 및 경쟁국의 산업정보 수집에 총력을 기울이는 실정이다. 이런 상황에서 졸업 후 기업이나 연구기관으로 진출하는 학생들의 연구보안 의식을 제고하려는 노력은 기술 유출을 예방하는 첫걸음이자 국가의 기술경쟁력을 강화하는 방안으로 중요성이 높아지고 있다. 국가정보원(원장 김규현, 이하 국정원), 국가과학기술인력개발원(원장 정해관 직무대행, 이하 KIRD) 및 부산대학교(총장 차정인)와 공동 주관하는 이번 워크숍은 지난해 6월 발족한 '대학 연구보안교육 협의회(이하 협의회)'가 1년간 추진한 연구보안 교육혁신 성과를 공유하는 자리다.이날 열리는 행사에는 KAIST 등 4대 과기특성화대학, 부산대학교 등 47개 대학과 국정원, 과학기술정보통신부, KIRD 관계자 등 79
2023-07-19우리 대학 설명가능 인공지능연구센터(센터장 최재식 교수)가 주관하여 ‘KCC 2023 설명가능 인공지능(XAI) 워크샵’을 6월 19일(월) 제주 오리엔탈호텔에서 개최했다. 본 워크샵은 ‘사람중심인공지능핵심원천기술개발’ 연구과제에 참여하고 있는 여러 대학 및 연구기관 연구진들의 기술교류 행사로, 설명가능 인공지능(eXplainable Artificial Intelligence, 이하 XAI) 연구 동향 및 참여기관별 연구 성과를 공유하고 연구진 간 교류를 확대하고자 하는 목적으로 개최되었다. XAI 기술은 인공지능 모델의 예측 및 생성 결과에 대한 근거를 인간이 이해할 수 있는 방식으로 설명하는 기술로서 최근 EU를 중심으로 AI 규제의 움직임이 구체화되는 상황에서 투명하고 신뢰할 수 있는 AI기술을 구현할 수 있는 기술로 주목 받고 있다. 정보통신기획평가원 이현규 PM의 환영사와 한국정보과학회 이원준 회장의 축사로 시작된 행사는 국
2023-07-01