< 사진 3. (왼쪽부터) 박지호 교수, 한준희 박사과정, 염경환 박사과정, Erinn Fagan 석사과정, 장민철 박사과정 >
코로나19의 전 세계적 유행 이후, 폐 등 호흡기 질병에 대비하기 위한 mRNA 백신 및 치료제는 차세대 치료제로 주목받고 있다. 하지만 기존 mRNA 백신용 전달체가 가지고 있는 한계점을 극복하고 우리 대학 연구진이 호흡기 바이러스 및 난치성 폐질환의 mRNA 흡입 치료를 가능케 하며 유전자 폐 치료 연구의 근간이 될 연구에 성공했다.
우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 유전자 폐 치료에 최적화된 나노 전달체를 개발했다고 7일 밝혔다.
연구팀은 기존 mRNA 전달을 위해 활용되던 지질나노입자(이하 lipid nanoparticle, LNP)의 에어로졸화 과정에서의 불안정성과 폐 미세환경에서의 낮은 전달 효율을 해결하기 위해 이온화성 지질나노복합체(ionizable lipocomplex, iLPX)를 개발했다.
iLPX는 이온화성 리포좀의 외부에 mRNA를 결합한 형태로, 에어로졸화 과정에서 입자의 구조를 유지하기 때문에 흡입 전달에 용이하다. 또한, 폐 미세환경 내에서 폐계면활성제와의 상호작용을 유도해 호흡 운동을 활용, mRNA를 높은 효율로 폐 세포 내로 전달할 수 있다.
< 그림 1. 흡입 최적화 지질 나노 복합체의 mRNA 흡입 전달 전략 모식도 >
흡입 전달 및 폐 미세환경을 고려한 모방 환경 및 마우스 폐에서의 단백질 발현을 토대로 한 다차원 선별 과정을 통해 iLPX의 구성 요소들을 최적화시킴으로써 흡입용 mRNA 전달체(Inhalation optimized-iLPX, 이하 IH-iLPX)를 완성했다.
연구팀은 에어로졸화 전후의 입자 크기, 균일도, mRNA 탑재율을 비교함으로써 IH-iLPX의 월등한 에어로졸화 안정성을 증명했다. 나아가, IH-iLPX를 전달한 마우스에서 LNP 전달 마우스보다 26배 높은 단백질 발현이 유도됨을 확인했다.
연구팀은 동물 모델에서 흡입 전달된 IH-iLPX가 폐 특이적으로 단백질을 발현시키며, 폐포 상피세포와 기관지 상피세포에서 mRNA를 효과적으로 전달함을 확인했다. 또한 혈액 생화학 분석과 조직 검사를 토대로 IH-iLPX가 폐와 혈액 환경에서 독성이 없음을 확인했기 때문에 효과적인 폐내 mRNA 발현뿐만 아니라 생체 안전성 측면에서 큰 의의를 갖는다고 밝혔다.
< 그림 2. 기존 mRNA 전달체와 개발된 흡입용 전달체의 흡입전달 후 마우스 폐에서의 단백질 발현량 비교 >
박 교수는 “mRNA를 반드시 내부에 탑재해야 한다는 고정 관념을 깨고 새로운 구성의 입자를 제시함으로써 기존에 불가능했던 흡입형 유전자 치료의 길을 열었다”며 “본 연구실에서 개발한 흡입형 유전자 전달체는 치료 단백질을 암호화하는 mRNA를 탑재해 폐질환에 적용되어 유전자 폐 치료의 적용 범위를 넓힐 것으로 기대된다”이라고 말했다.
바이오및뇌공학과 장민철 박사과정이 제1 저자로 참여한 이번 연구 결과는 나노기술 분야 국제학술지 ‘ACS 나노(Nano)’ 9월 3일 자 18권 35호에 게재됐다. (논문명: Inhalable mRNA Nanoparticle with Enhanced Nebulization Stability and Pulmonary Microenvironment Infilration)
이번 연구는 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
우리 대학 의과학대학원이 오는 24일(목) 오후 2시에 대전 KAIST 본원에서 2023년 노벨생리의학상 수상자인 드루 와이즈만(Drew Weissmann) 교수 초청 강연을 개최한다. 의과학대학원이 주관하고 대학과 KAI-X의 지원을 받아 마련된 이번 초청 강연은 mRNA 기술을 이용한 백신과 신약 개발 기술에 관심이 있는 우리 대학 학생들에게 자신감과 도전 의식을 심어주고, 대중의 과학 흥미를 고취하고자 추진됐다. 드루 와이즈만 교수는 핵산 변형(nucleotide modification)을 통해 mRNA의 면역 과반응 억제를 유도하고 이를 통한 mRNA 백신 개발에 기여한 공로로 2023년 노벨생리의학상을 카리코 카탈린 교수와 함께 공동 수상했다. 일반적으로 위부에서 세포 내로 주입된 RNA는 선천성 면역반응을 강하게 유도하여 단백질 생산을 억제하고 과도한 염증 반응을 일으킬 수 있다. 드루 와이즈만 교수와 카리코 카탈린 교수 공동연구팀은 이 RNA 구성요소인 핵
2024-10-17코로나19 팬데믹으로 어려움을 겪고 있던 지역 소상공인들을 지원하기 위해 시행된 재난지원금이 실제로 지역 경제에 긍정적인 영향을 미쳤는지 우리 연구진이 분석했다. 분석 결과, 소상공인 매출 증가는 지역 내 소비 확산으로 이어져 지역 상권에도 긍정적인 영향을 주었음을 밝혀냈다. 우리 대학 기술경영학부의 김지희 교수팀이 코로나19 재난지원금이 소상공인 매출에 미친 영향을 실증적으로 분석했다고 16일 밝혔다. 연구진은 경기도와 인천이 서로 다른 정책을 추진했다는 점에 착안하여 연구를 진행했다. 경기도는 코로나19 초기인 2020년 4월부터 모든 주민에게 재난지원금을 지급했고, 해당 금액은 오직 지역 소상공인 가게에서만 사용할 수 있도록 제한됐다. 반면, 인천은 같은 시기에 재난지원금을 지급하지 않았다. 연구 결과, 인천과 비교하여 경기도에서는 소상공인 매출이 재난지원금 지급 후 첫 5주 동안 약 4.5% 증가했으며, 소상공인 총매출 증가분은 재난지원금으로 지급된 예산의 1.
2024-10-16생명체는 DNA, RNA, 단백질과 같은 바이오분자들의 조절 작용으로 다양한 생물학적 기능을 수행한다. 바이오분자들의 조절로 유전 정보가 전달되고, 잘못 전달된 정보는 유전자 변형이나 감염성 질병의 원인이 된다. 따라서 분자생물학적 조절 연구는 유전자 치료제와 첨단 백신 개발에 중요하다. 특히, 2023년 코로나 mRNA 백신 기술을 개발한 과학자들이 노벨 생리의학상을 수상하면서 RNA 조절 연구에 기반한 첨단신약, 바이오공학 기술이 크게 주목받고 있다. 우리 대학 바이오및뇌공학과 이영석 교수 연구팀이 기초과학연구원(IBS) RNA 연구단 김빛내리 단장(서울대 생명과학부 석좌교수), 미국 국립암연구소 유진 발코프(Eugene Valkov) 박사팀과 공동연구를 통해 자체 개발한 단일핵산 분석법을 적용해 전령 RNA(messenger RNA, 이하 mRNA) 분해의 새로운 조절 기전을 찾았다고 밝혔다. mRNA는 긴 단일 가닥 RNA 분자로, DNA에 보관된 유전 정보를 단백질에
2024-02-28단백질 정보를 가진 mRNA 유전자 조절 기전에서 알루 요소(Alu)의 중요성을 제시하고, 나아가 종양 형성, 퇴행성 뇌질환 등 mRNA가 변화하는 다양한 질환에서 역방향 알루 반복구조(IRAlus)라는 새로운 발병 원인을 최초로 제시함으로써 질병 치료에 획기적인 방안을 제시하였다. 우리 대학 생명화학공학과 김유식 교수와 바이오및뇌공학과 이영석 교수 공동 연구팀이 종양 형성과 퇴행성 뇌질환을 유발하는 새로운 유전자 조절 기전을 찾아냈다고 6일 밝혔다. 인간 유전체의 약 10%를 차지하는 반복서열인 알루 요소(Alu element, Alu)는 단백질 정보를 가지는 전령 RNA(messenger RNA, mRNA)의 단백질 생산 효율을 조절할 수 있다. 특히, mRNA가 2개의 알루 요소로 형성된 역방향 알루 반복 구조(Inverted Alu repeats, IRAlus)를 가지게 되면 mRNA의 세포 내 이동이 방해되어 단백질 생산이 감소한다. 연구팀은 질환 특이적으로
2024-02-06현재 널리 사용되고 있는 코로나바이러스 mRNA 백신은 선형 형태의 mRNA를 가지고 있어 세포내에서 매우 불안정한 특징이 있다. 반면 원형 형태의 RNA(circular RNA)는 선형 RNA에 비해 매우 안정되기 때문에 수많은 국내외 제약회사에서 RNA 안정성을 높이기 위해 원형 RNA를 개발하고 있는 상황이다. 이에 원형 RNA에서 일어나는 단백질 합성 과정에 대한 연구가 필요한 실정이다. 우리 대학 생명과학과 김윤기 교수 연구팀이 진핵세포 내에서 일어나는 원형 RNA(circular RNA)의 단백질 합성 과정에 대한 새로운 메커니즘을 규명했다고 23일 밝혔다. 분자생물학에서 ‘중심원리(central dogma)’라고 알려진 DNA로부터 시작해 RNA, 단백질로 이어지는 유전정보의 흐름은 다양한 생물학적 기능을 나타내는 중요 원리다. 이때 최종 생산 산물인 단백질은 번역 과정에 의해 생성되며 이와 관련한 메커니즘 연구는 예로부터 활발히 진행돼오
2023-10-24