< (왼쪽부터) 전기및전자공학부 김용훈 교수, 이룡규 박사과정 >
인공지능과 고성능 과학계산 간의 밀접한 관련성은 최근 2024년도 노벨 물리학상과 화학상이 동시에 수상된 것을 보면 알 수 있다. 우리 연구진이 인공지능을 활용하여 3차원 공간에 분포하는 원자 수준의 화학결합 정보를 예측하여 양자역학적 고성능 컴퓨터 시뮬레이션의 계산 시간을 획기적으로 단축하는데 성공했다.
우리 대학 전기및전자공학부 김용훈 교수팀이 물질의 특성을 도출하기 위해 슈퍼컴퓨터를 활용해 수행되는 원자 수준 양자역학적 계산에 필요한 복잡한 알고리즘을 우회하는 3차원 컴퓨터 비전 인공신경망 기반 계산 방법론을 세계 최초로 개발했다고 30일 밝혔다.
슈퍼컴퓨터를 활용한 양자역학적 밀도범함수론(density functional theory, DFT)* 계산은 빠르면서도 정확하게 양자 물성을 예측할 수 있게 해 첨단 소재 및 약물 설계를 포함한 광범위한 연구·개발 분야에서 표준적인 도구로 자리 잡아 필수 불가결한 역할을 하고 있다.
*밀도범함수론(DFT): 원자 단위에서부터 양자역학적으로 물성을 계산하는 제1원리 계산의 대표적인 이론
그러나 실제 밀도범함수론 계산에서는 3차원적인 전자밀도를 생성한 후 양자역학 방정식을 푸는 복잡한 자기일관장 과정(self-consistent field, SCF)*을 수십에서 수백 번씩 반복해야 해서 그 적용 범위가 수백~수천 개의 원자로 제한되는 한계가 있었다.
*자기일관장(SCF): 상호 연결된 여러 개의 연립 미분 방정식으로 기술해야 하는 복잡한 다체 문제(many-body problem)를 해결하기 위해 널리 사용되는 과학계산법
< 그림 1. 물질·소재 시뮬레이션에는 공간-시간 수준(level) 또는 스케일(scale)에 따라 나노미터(nm) 수준에서의 양자역학적 계산, 수십~수백 나노미터 규모의 고전역학적 힘장(force fields) 계산, 거시적 규모에서의 연속체 역학 계산 및 서로 다른 스케일의 시뮬레이션들을 혼합하는 계산 등의 다양한 방법론들이 활용됨. 이러한 시뮬레이션들은 이미 정보학(informatics) 기법 등과 결합하여 광범위한 기초연구 및 응용개발 분야에서 핵심적인 역할을 하고 있음. 최근에는 기계학습 기법을 도입해 시뮬레이션을 급진적으로 가속하고자 하는 노력이 활발하게 이루어지고 있으나 상위 스케일 시뮬레이션들의 근간을 이루는 양자역학적 전자구조 계산에 기계학습 기법을 도입하는 연구는 아직 미진한 상황임. >
김용훈 교수 연구팀은 자기일관장 과정을 최근 급속한 발전을 이룬 인공지능 기법으로 회피하는 것이 가능한지 질문했다. 그 결과 3차원 공간에 분포된 화학 결합 정보를 컴퓨터 비전 분야의 신경망 알고리즘을 통해 학습해 계산을 가속화하는 딥SCF(DeepSCF) 모델을 개발했다.
연구진은 밀도범함수론에 따라 전자밀도가 전자들의 양자역학적 정보를 모두 포함하고 있으며 이에 더해 전체 전자밀도와 구성 원자들의 전자밀도의 합 간의 차이인 잔여 전자밀도가 화학결합 정보를 담고 있는 점에 주목하고 기계학습의 목표물로 선정했다.
< 그림 2. 이번 연구에서 개발된 딥SCF 방법론은 전통적인 양자역학적 전자구조 계산에서 반복적으로 수행되어야 했던 자기일관장 과정을(주황색 박스) 인공신경망 기법을 통해 회피하여 DFT 계산을 급속히 가속화 하는 방안을 제공함(초록색 박스). 자기일관장 과정은 3차원 전자밀도를 예측하고 이에 해당하는 포텐셜을 구성한 후 양자역학적 콘-샴 방정식을 푸는 것을 수십-수백번 반복하는 과정임. 딥SCF 방법론의 핵심적인 아이디어는 전자밀도(ρ)와 구성 원자들의 전자밀도 합(ρ0) 차이인 잔여 전자밀도(δρ)가 화학결합 정보에 해당하므로 3차원 합성곱신경망 모델로 자기일관장 과정을 대체하는 것임. >
이후 다양한 화학결합 특성을 포함한 유기 분자들의 데이터 세트를 채택했고 그 안에 포함된 분자들의 원자구조들에 임의의 회전과 변형을 가해 모델의 정확도 및 일반화 성능을 더욱 높였다. 최종적으로 연구팀은 복잡하고 큰 시스템에 대해 딥SCF 방법론의 유효성 및 효율성을 입증했다.
이번 연구를 지도한 김용훈 교수는“3차원 공간에 분포된 양자역학적 화학결합 정보를 인공 신경망에 대응시키는 방법을 찾았다”며 “양자역학적 전자구조 계산이 모든 스케일의 물성 시뮬레이션의 근간이 되므로 인공지능을 통한 물질 계산 가속화의 전반적인 기반 원리를 확립한 것”이라고 연구의 의의를 부여했다.
< 그림 3. 탄소나노튜브 기반의 DNA 염기서열 분석 소자 모델(상단 왼쪽)에 대한 딥SCF 방법론 적용 예시. 고전역학적 원자간 힘뿐만 아니라(하단 오른쪽) 화학 결합의 정보를 담고 있는 잔여 전자밀도(상단 오른쪽) 및 전자 상태밀도(density of states, DOS)와 같은 양자역학적 전자구조 특성들(하단 왼쪽)을 SCF 과정을 수행하는 표준 DFT 계산 결과에 대응되는 정확도로 빠르게 예측함. >
전기및전자공학부 이룡규 박사과정이 제 1저자로 수행한 이번 연구는 소재 계산 분야의 권위 있는 학술지 '네이쳐 파트너 저널 컴퓨테이셔널 머터리얼즈(Npj Computational Materials)'에 10월 24일 字 온라인판에 게재됐다. (논문명 : Convolutional network learning of self-consistent electron density via grid-projected atomic fingerprints)
한편, 이번 연구는 KAIST 석박사 모험사업, 한국연구재단 중견연구자지원사업 등의 지원을 받아 수행되었다.
과학기술정보통신부(장관 유상임, 이하 과기정통부)와 정보통신기획평가원(원장 홍진배, 이하 IITP)은 10. 28일(월) 양재 서울 인공지능 중심지에서 「국가 인공지능 연구거점(National AI Research Lab)」 개소식을 개최하였다. 이날 개소식에서 우리 대학 이광형 총장, 오세훈 서울시장 등의 참석자들은 「국가 인공지능 연구거점」의 성공적 출범을 축하하며, 대한민국 인공지능 세계 3개 강국 도약을 위한 민관 한 팀 등에 대한 의지를 다졌다. 「국가 인공지능 연구거점」 주관기관인 우리 대학 이광형 총장은 “이 곳에서 국내외 인공지능 연구자들이 교류하며 창의적 인공지능 연구를 펼치길 바란다”고 밝혔고, 「국가 인공지능 연구거점」이 위치할 서울시의 오세훈 시장은 “「국가 인공지능 연구거점」에 기반하여 서울시가 세계적인 인공지능 연구자들이 모여드는 국제 인공지능 중심지로 성장할 수 있도록 전폭 지원하겠다”고 강조하였다. 이어
2024-10-29인간의 두뇌는 외부 세상으로부터 감각 정보를 받아들이기 이전부터 자발적인 무작위 활동을 통해 학습을 시작한다. 우리 연구진이 개발한 기술은 뇌 모방 인공신경망에서 무작위 정보를 사전 학습시켜 실제 데이터를 접했을 때 훨씬 빠르고 정확한 학습을 가능하게 하며, 향후 뇌 기반 인공지능 및 뉴로모픽 컴퓨팅 기술 개발의 돌파구를 열어줄 것으로 기대된다. 우리 대학 뇌인지과학과 백세범 교수 연구팀이 뇌 모방 인공신경망 학습의 오래된 난제였던 가중치 수송 문제(weight transport problem)*를 해결하고, 이를 통해 생물학적 뇌 신경망에서 자원 효율적 학습이 가능한 원리를 설명했다고 23일 밝혔다. *가중치 수송 문제: 생물학적 뇌를 모방한 인공지능 개발에 가장 큰 장애물이 되는 난제로, 현재 일반적인 인공신경망의 학습에서 생물학적 뇌와 달리 대규모의 메모리와 계산 작업이 필요한 근본적인 이유임. 지난 수십 년간 인공지능의 발전은 올해 노벨 물리학상을 받은 제프리
2024-10-23우리 대학 전산학부 박종세 교수 연구팀이 지난 9월 15일부터 9월 17일까지 캐나다 밴쿠버에서 열린 ‘2024 IEEE 국제 워크로드 특성화 심포지엄(IEEE International Symposium on Workload Characterization, 이하 IISWC 2024)’에서 최우수 논문상(Best Paper Award)과 최우수 연구 기록물 상(Distinguished Artifact Award)’을 동시에 수상했다고 26일 밝혔다. 박 교수 연구팀은 ‘초거대 언어모델 추론 서비스 제공을 위한 HW/SW 공동 시뮬레이션 인프라(LLMServingSim: A HW/SW Co-Simulation Infrastructure for LLM Inference Serving at Scale)’ 논문으로 두 상을 동시에 수상했다. IISWC는 컴퓨터 시스템 워크로드 특성화 분야에서 권위를 자랑하는 국제 학회이며, 개
2024-10-11새로운 물질을 설계하거나 물질의 물성을 예측하는 데 인공지능을 활용하기도 한다. 한미 공동 연구진이 기본 인공지능 모델보다 발전되어 화학 개념 학습을 하고 소재 예측, 새로운 물질 설계, 물질의 물성 예측에 더 높은 정확도를 제공하는 인공지능을 개발하는 데 성공했다. 우리 대학 화학과 이억균 명예교수와 김형준 교수 공동 연구팀이 창원대학교 생물학화학융합학부 김원준 교수, 미국 UC 머세드(Merced) 응용수학과의 김창호 교수 연구팀과 공동연구를 통해, 새로운 인공지능(AI) 기술인 ‘프로핏-넷(이하 PROFiT-Net)’을 개발하는 데 성공했다고 9일 밝혔다. 연구팀이 개발한 인공지능은 유전율, 밴드갭, 형성 에너지 등의 주요한 소재 물성 예측 정확도에 있어서 이번 기술은 기존 딥러닝 모델의 오차를 최소 10%, 최대 40% 줄일 수 있는 것으로 보여 주목받고 있다. PROFiT-Net의 가장 큰 특징은 화학의 기본 개념을 학습해 예측 성능을
2024-10-10최근 빠른 고령화 및 출산율 감소 등으로 1인 가구가 급속하게 증가하면서, 1인 가구의 정신건강 문제에 대한 관심도 함께 높아지고 있다. 서울시가 실시한 1인 가구 실태조사에 따르면, 1인 가구의 60% 이상이 외로움을 느끼고 있으며, 특히 사회적 고립과 함께 외로움을 겪는 비율이 상당히 높은 것으로 나타났다. 우리 대학 전산학부 이의진 교수 연구팀이 1인 가구의 정신건강 관리를 위해, 사용자 스스로가 자신의 심리 상태를 기록할 수 있도록 지원하는 상황 인식 기반 멀티모달 스마트 스피커 시스템을 개발했다고 24일 밝혔다. 연구팀은 사용자의 주변 상황을 실시간으로 파악해 최적의 시점에 정신건강 관련 질문하도록 이 시스템을 설계했고 기존의 무작위 설문보다 높은 응답률을 달성하는 것을 확인했다. 기존 스마트 스피커를 활용한 정신건강 자가 추적 연구에서 무작위 설문을 할 경우 사용자의 스트레스, 짜증 등 부정적인 감정이 유발시켜 설문 응답에 편향이 발생할 수 있어 각별한 주의
2024-09-24