본문 바로가기 대메뉴 바로가기

일상 움직임으로 웨어러블 기기가 충전된다​
조회수 : 801 등록일 : 2024-12-10 작성자 : 홍보실

(왼쪽부터) 난양공대 이석우 교수, 이동훈 박사, KAIST 서동화 교수, 송유엽 박사과정

< (왼쪽부터) 난양공대 이석우 교수, 이동훈 박사, KAIST 서동화 교수, 송유엽 박사과정 >

국제 공동 연구진이 운동 에너지를 전기 에너지로 효율적으로 변환하여 웨어러블 기기의 자가 충전이 가능하게 하는 새로운 방법을 개발했다. 이제 일상적인 움직임, 즉 저주파 운동에서도 효율적으로 에너지를 수확할 수 있게 되었다. 

우리 대학 신소재공학과 서동화 교수 연구팀이 싱가포르 난양공대(NTU, Nanyang Technological Univ.) 전자공학과 이석우 교수 연구팀과의 국제공동연구를 통해 새로운 전기화학적 에너지 수확 방법을 개발했으며, 이를 통해 기존 기술 대비 10배 높은 출력과 100초 이상 지속되는 전류 생성에 성공했다고 10일 밝혔다. 

운동 에너지를 전기 에너지로 변환시키는 보통 압전(Piezo-electric)과 마찰전기(Tribo-electric) 방식으로 순간적으로 높은 전력을 발생시킬 수 있지만, 내부 저항이 높기 때문에 전류가 짧게 흐르는 한계가 있다. 이에 따라, 보다 효율적이고 지속 가능한 에너지 하베스팅(수확) 기술이 요구되고 있다. 

연구팀은 물과 이온성 액체 전해질에 전극을 각각 담가 이온의 이동으로 발생하는 전위차(전기적 위치에너지)를 이용하여 전력을 수확하는 새로운 방식을 개발했다. 

또한, 연구팀은 이온이 전해질과 전극 계면에서 산화ㆍ환원 반응을 통해 에너지를 어떻게 발생시키는지 더 깊이 이해하기 위해 *1원리 기반 분자동역학 시뮬레이션을 수행했다.

*1원리 기반 분자동역학 시뮬레이션: 양자역학 법칙을 사용해 전자들의 거동을 계산하는 것을 말하며 원자들 사이의 상호작용을 계산으로 구한 뒤, 이를 통해 시간에 따른 원자들의 움직임을 예측하는 것임 

그 결과, 이온이 각 전해질에서 주변 용매와 상호작용하는 방식과, 전해질 환경 따른 전극 내부에서의 주변 상호작용 에너지가 다르게 나타났음을 확인했다. 이러한 종합적인 상호작용이 에너지 차이를 발생시키며, 이를 통해 전해질 간 전위 차이를 설명하는 중요한 원리를 제시했다.

연구 대표 그림

< 연구 대표 그림 >

연구진은 이 시스템을 여러 개 직렬로 연결하면 출력 전압을 크게 높일 수 있다는 것도 확인했다. 그 결과 계산기를 작동시킬 수 있을 정도인 935mV의 전압을 달성했으며, 이는 저전압 기기나 웨어러블 디바이스와 같은 장치에 적용 가능하다. 

또한, 물리적 마모 없이 장시간 안정적으로 작동할 수 있어, 이 기술은 사물인터넷(IoT) 기기나 자가 충전형 전자기기에도 실용적으로 적용될 가능성이 크다.

그림 1. 섞이지 않는 두 전해질에서 전기 에너지 생성 및 원리 규명

< 그림 1. 섞이지 않는 두 전해질에서 전기 에너지 생성 및 원리 규명 >

서동화 교수는 "이번 연구의 핵심은 일상적인 움직임, 즉 저주파 운동에서도 효율적으로 에너지를 수확할 수 있다는 점이라며 "시뮬레이션과 실험의 협업을 통해 에너지 수확 원리를 깊이 이해함으로써 설계 가이드라인을 도출할 수 있었고, 이는 상용화 가능성을 크게 높였다고 설명했다.

그림 2. 운동 에너지 수확 시스템 간 성능 비교, 저주파 에너지 수확 사이클, 미세유체 장치 적용

< 그림 2. 운동 에너지 수확 시스템 간 성능 비교, 저주파 에너지 수확 사이클, 미세유체 장치 적용 >

이번 연구는 이동훈 난양공대 전자공학과 박사과정, 송유엽 KAIST 신소재공학과 박사과정 학생이 공동 제1 저자로 참여했다. 연구 결과는 네이처 커뮤니케이션에 지난 1019일 자로 온라인 출판됐다.

(논문명 : Electrochemical kinetic energy harvesting mediated by ion solvation switching in two-immiscible liquid electrolyte)

DOI: 10.1038/s41467-024-53235-z 

한편, 이번 연구는 한국연구재단의 나노 및 소재 기술개발사업, 중견연구사업의 지원을 받아 이뤄졌고, 한국과학기술정보연구원의 슈퍼컴퓨터를 지원받아 수행됐다.

관련뉴스