< KAIST-충남대 업무협약 기념사진. 왼쪽부터 KAIST 이광형 총장, 충남대 김정겸 총장 >
우리 대학은 충남대학교와 ‘공동연구협력에 따른 바이오 분야 융합연구 활성화를 위한 업무협약’을 체결했다고 15일(수) 밝혔다.
첨단 바이오분야는 5000조 세계시장을 대상으로 국가간 경쟁이 치열하므로 교육 및 연구개발의 중복투자를 막고 국내 대학간 협력하는 시너지 창출 전략이 필요하다. 첨단 바이오 핵심 연구개발을 수행 중인 우리 대학은 이웃에 위치한 의학 약학 농학 수의학 등 다양한 바이오 분야의 특화된 충남대와의 본격적인 협력에 나선다.
양 대학은 협약 체결을 통해 바이오 분야 융합연구 활성화를 추진하기 위한 공동연구 협력으로 단기간에 세계적인 바이오 분야 가치 창출을 기대하며 국내 대학 간의 공동협력의 중요한 모델과 이정표를 제시하게 될 것이다.
이번 협약에 따라 양 대학은 ▲연구센터 설립을 통한 상호 관심 분야 주제 발굴 및 공동연구 추진 ▲연구 기자재, 시설물 등 인프라 공동 활용 ▲학과 신설을 통한 전문인력 교류 및 양성 ▲ 교수진 참여 공동 교육과정 개발 및 운영 등 다양한 협력 방안을 추진할 예정이다.
< KAIST-충남대 업무협약 기념사진. 양 대학 총장 외 관계자 >
충남대 김정겸 총장은 “이번 협약을 통해 충남대와 KAIST가 국내는 물론 글로벌 바이오 융합연구를 위한 전략적 구심점으로 발돋음할 것으로 기대된다.”며 “충남대는 KAIST와의 이번 협력을 바탕으로 우리 연구자들이 혁신적인 연구에 도전하고, 성과를 달성함으로써 글로벌 연구자로 성장할 수 있도록 미래를 위한 지원과 관심을 아끼지 않겠다.”고 말했다.
이광형 총장은 “그동안 긴밀히 유지되어 온 양교간 상호협력을 바탕으로, 바이오 연구 역량과 인프라가 결합하여 융합연구의 새로운 지평을 열 수 있기를 기대한다”면서 “KAIST는 충남대학교와 전문인력 교류, 공동 교육과정 개발, 학생 창업 교류 확대 등을 통해 국가와 지역사회 발전에 더욱 기여할 수 있기를 바란다.”고 강조했다.
우리 대학과 충남대는 1월 15일, 충남대 대학본부 대회의실에서 이광형 총장, 충남대 김정겸 총장 등 양 기관 관계자들이 함께한 가운데 업무협약식을 개최했다.
생물학적 구조는 인공적으로 복제하기 어려운 정도의 복잡한 특징을 가지고 있지만 이러한 생체 구조체를 직접적으로 활용여 제작하는 생체형틀법*은 다양한 분야의 응용으로 사용됐다. KAIST 연구진이 이전에 활용할 수 없었던 생체 구조체를 활용하고, 생체형틀법을 통해 적용될 수 있는 영역을 넓히는데 성공했다. *생체형틀법: 바이러스부터 우리의 몸을 구성하는 조직과 장기에 이르기까지 이러한 생체 구조의 기능을 활용하고자, 생체 구조를 형틀로 사용하여 기능성 구조재료를 만들어내는 방식 우리 대학 신소재공학과 장재범, 정연식 교수 공동연구팀이 생체 시료 안의 특정 내부 단백질을 활용하고 높은 조정성을 지닌 생체형틀법을 개발했다고 10일 밝혔다. 기존의 생체형틀법 방법은 주로 생체시료의 외부 표면만을 활용하거나, 한정된 치수와 샘플 크기로 인해 다양한 생체 구조체들의 구조-기능 상관성을 활용하여 기능성 나노구조체를 제작하기 어렵다는 한계를 가지고 있다. 이런 문제를 해결하고자 연
2025-01-10우리 대학이 미래 첨단 바이오 의료시대를 대비해 연구 투자 및 산학협력 확대를 위해 16일(월) 대전 본원에서 HLB(주)(에이치엘비, 이하 HLB) 그룹(회장 진양곤)과 포괄적인 상호협력 협약을 맺는다. 이번 협약을 통해 두 기관은 암, 파킨슨병 등 난치성 질환 신약을 발굴하기 위한 교육과 연구를 전격적으로 추진할 예정이다. 국내 바이오 의료분야의 GDP 기여율은 1.6%에 불구하고, 연간 약 7,000조에 이르는 세계 신약 시장에 차지하는 비율도 미미하다. 한국경제의 반도체, 배터리, 자동차 산업 의존도가 매우 높은 만큼 바이오 의료분야의 약진이 절실한 상황이다. 이에 우리 대학은 첨단 바이오 분야 발전을 위해 생명과학기술대학 산하에 ‘공학생물학대학원’과‘줄기세포및재생의료대학원’프로그램 개설한 바 있다. 또한 지자체 및 신약 개발 기업과 전방위적인 협력으로 바이오 의료분야 선순환 발전을 위한 돌파구 마련에 노력하고 있다.
2024-12-16유전자, 단백질, 대사물질 등 복잡한 정보를 표현하는 바이오 경로 이미지는 중요한 연구 결과를 내포하고 있지만, 이미지 기반 정보 추출에 대해 그동안 충분한 연구가 이뤄지지 않았다. 이에 우리 연구진은 바이오 경로 정보를 자동으로 추출할 수 있는 인공지능 프레임워크를 개발했다. 우리 대학 생명화학공학과 김현욱 교수 연구팀이 바이오 경로 이미지에서 유전자와 대사물질 정보를 자동으로 추출하는 기계학습 기반의 ‘바이오 경로 정보 추출 프레임워크(이하 EBPI, Extraction of Biological Pathway Information)’를 개발했다고 28일 밝혔다. 연구팀이 개발한 EBPI는 문헌에서 추출한 이미지 속의 화살표와 텍스트를 인식하고, 이를 기반으로 바이오 경로를 편집 가능한 표의 형태로 재구성한다. 객체 감지 모델 등의 기계학습을 사용해 경로 이미지 내 화살표의 위치와 방향을 감지하고, 이미지 속 텍스트를 유전자, 단백질, 대사물질로 분
2024-11-28인체의 상당 부분을 차지하는 골격근을 이제 우리 연구진에 의해 랩온어칩과 같은 첨단 바이오 제조 기술을 적용해 안정적인 제작이 가능하게 됐다. 우리 대학 기계공학과 바이오미세유체 연구실 전성윤 교수 연구팀이 기계공학과 심기동 교수팀과 공동 연구를 통해, 체외 삼차원 환경에서 골격근 조직을 제작하는 바이오 미세유체시스템(Biomicrofluidic system)*을 개발했다고 27일 밝혔다. *바이오 미세유체시스템: 반도체 회로 제조 등에 사용되는 포토리소그래피(Photolithography) 공정 등을 기반으로 제작되는 마이크로 스케일의 시스템으로, 세포 및 생체조직 배양, 유동 생성 및 제어 등에 활용됨 연구팀은 해당 연구에서 자체 개발한 미세유체시스템을 사용해 골격근 조직 배양에 있어 큰 비중을 차지하는 하이드로겔의 구성 성분, 겔화 시간, 세포의 농도를 조절해 다양한 조건에서 삼차원 근육 밴드를 제작했다. 또한, 제작된 골격근 조직에 대해 근육의 수축력 및 반
2024-11-27현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다. 우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다. 유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. *단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함 이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테
2024-11-07