< (왼쪽부터) 전기및전자공학부 윤영규 교수, 한승재 석박사통합과정, 정학천 석박사통합과정, 최신현 교수 >
기존 컴퓨터 시스템은 데이터 처리 장치와 저장 장치가 분리돼 있어, 인공지능처럼 복잡한 데이터를 처리하기에는 효율적이지 않다. KAIST 연구팀은 우리 뇌의 정보 처리 방식과 유사한 멤리스터 기반 통합 시스템을 개발했다. 이제 원격 클라우드 서버에 의존하지 않고 의심스러운 활동을 즉시 인식하는 스마트 보안 카메라부터 건강 데이터를 실시간으로 분석할 수 있는 의료기기까지 다양한 분야에 적용될 수 있게 되었다.우리 대학 전기및전자공학부 최신현 교수, 윤영규 교수 공동연구팀이 스스로 학습하고 오류를 수정할 수 있는 차세대 뉴로모픽 반도체 기반 초소형 컴퓨팅 칩을 개발했다고 17일 밝혔다.
연구팀이 개발한 이 컴퓨팅 칩의 특별한 점은 기존 뉴로모픽 소자에서 해결이 어려웠던 비이상적 특성에서 발생하는 오류를 스스로 학습하고 수정할 수 있다는 것이다. 예를 들어, 영상 스트림을 처리할 때 칩은 움직이는 물체를 배경에서 자동으로 분리하는 법을 학습하며 시간이 지날수록 이 작업을 더 잘 수행하게 된다.
이러한 자가 학습 능력은 실시간 영상 처리에서 이상적인 컴퓨터 시뮬레이션에 견줄 만한 정확도를 달성하며 입증됐다. 연구팀의 주요성과는 뇌와 유사한 구성 요소의 개발을 넘어, 신뢰성과 실용성을 모두 갖춘 시스템으로 완성한 것에 있다.
< 그림 1. 높은 신뢰성을 가진 셀렉터리스(selector-less) 32×32 멤리스터 크로스바 어레이가 탑재된 컴퓨팅 칩의 주사 전자 현미경(SEM) 이미지 (왼쪽). 실시간 인공지능 구현을 위해 개발된 하드웨어 시스템 (오른쪽) >
연구팀은 세계 최초로 즉각적인 환경 변화에 적응할 수 있는 멤리스터 기반 통합 시스템을 개발하며, 기존 기술의 한계를 극복하는 혁신적인 해결책을 제시했다.
이 혁신의 핵심에는 멤리스터(memristor)*라고 불리는 차세대 반도체 소자가 있다. 이 소자의 가변 저항 특성은 신경망의 시냅스 역할을 대체할 수 있게 되고, 이를 활용해 우리 뇌세포처럼 데이터 저장 및 연산을 동시에 수행할 수 있다.
*멤리스터: 메모리(memory)와 저항(resistor)의 합성어로 두 단자 사이로 과거에 흐른 전하량과 방향에 따라 저항값이 결정되는 차세대 전기소자
연구팀은 저항 변화를 정밀하게 제어할 수 있는 고신뢰성 멤리스터를 설계하고, 자가 학습을 통해 복잡한 보정 과정을 배제한 효율적인 시스템을 개발했다. 이번 연구는 실시간 학습과 추론을 지원하는 차세대 뉴로모픽 반도체 기반 통합 시스템의 상용화 가능성을 실험적으로 검증했다는 점에서 중요한 의미를 가진다.
< 그림 2. 멤리스터 소자의 비이상적 특징이 포함된 영상의 배경 및 전경 분리 결과 (왼쪽). 본 연구진이 개발한 멤리스터 컴퓨팅 칩을 통한 기기 내 학습을 통한 실시간 영상 분리 결과 (오른쪽) >
이 기술은 일상적인 기기에서 인공지능을 사용하는 방식을 혁신하여 AI 작업 처리를 위해 원격 클라우드 서버에 의존하지 않고 로컬에서 처리할 수 있게 되어, 더 빠르고 사생활 보호가 강화되며 에너지 효율성이 높아질 것이다.
이 기술 개발을 주도한 KAIST 정학천 연구원과 한승재 연구원은 “이 시스템은 책상과 자료 캐비닛을 오가며 일하는 대신 모든 것이 손이 닿는 곳에 있는 스마트 작업 공간과 같다. 이는 모든 것이 한 곳에서 처리돼 매우 효율적인 우리 뇌의 정보 처리 방식과 유사하다”고 설명했다.
전기및전자공학부 정학천 석박통합과정생과 한승재 석박사통합과정생이 제 1저자로 연구에 참여했으며 국제 학술지 `네이처 일렉트로닉스 (Nature Electronics)'에 2025년 1월 8일 자로 온라인 게재됐다.
(논문 제목: Self-supervised video processing with self-calibration on an analogue computing platform based on a selector-less memristor array, https://doi.org/10.1038/s41928-024-01318-6)
이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업, 우수신진연구사업, PIM인공지능반도체핵심기술개발사업, 정보통신기획평가원의 한국전자통신연구원연구개발지원사업의 지원을 받아 수행됐다.
뇌의 맥락 추론 방식이 챗지피티 같은 대규모 인공지능 모델과 어떻게 다를까? 우리 연구진이 ‘뇌처럼 생각하는 인공지능’기술로서 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간이나 동물과 유사하게 스스로 가설을 세워 검증하는 신개념 인공지능 모델을 개발하는데 성공했다. 우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 생명과학과 정민환 교수(IBS 시냅스 뇌질환 연구단 부연구단장) 연구팀이 동물이 가설을 세워 일관된 행동 전략을 유지함과 동시에, 본인의 가설을 스스로 의심하고 검증하면서 상황에 빠르게 적응하는 새로운 강화학습 이론을 제시하고 뇌과학적 원리를 규명했다고 20일 밝혔다. 현재 상황에 맞게 행동의 일관성과 유동성 사이의 적절한 균형점을 찾아가는 문제를 ‘안정성-유동성의 딜레마(Stability-flexibility dilemma)’라 한다. 이를 위해서
2025-02-27최근 인공지능 기술의 발전으로 챗GPT와 같은 대형 언어 모델(이하 LLM)은 단순한 챗봇을 넘어 자율적인 에이전트로 발전하고 있다. 구글(Google)은 최근 인공지능 기술을 무기나 감시에 활용하지 않겠다는 기존의 약속을 철회해 인공지능 악용 가능성에 대한 논란이 불거진 점을 상기시키며, 연구진이 LLM 에이전트가 개인정보 수집 및 피싱 공격 등에 활용될 수 있음을 입증했다. 우리 대학 전기및전자공학부 신승원 교수, 김재철 AI 대학원 이기민 교수 공동연구팀이 실제 환경에서 LLM이 사이버 공격에 악용될 가능성을 실험적으로 규명했다고 25일 밝혔다. 현재 OpenAI, 구글 AI 등과 같은 상용 LLM 서비스는 LLM이 사이버 공격에 사용되는 것을 막기 위한 방어 기법을 자체적으로 탑재하고 있다. 그러나 연구팀의 실험 결과, 이러한 방어 기법이 존재함에도 불구하고 쉽게 우회해 악의적인 사이버 공격을 수행할 수 있음이 확인됐다. 기존의 공격자들이 시간과 노력이 많이
2025-02-24우리 대학 기계공학과 이승철 교수 연구팀이 POSTECH 신소재공학과 김형섭 교수 연구팀과 함께 인공지능 기술을 활용해 Ti-6Al-4V 합금의 강도-연성 딜레마를 극복하고 고강도·고연신 금속 제품을 생산해 내는 데 성공했다고 밝혔다. 연구팀이 개발한 인공지능은 3D프린팅 공정변수에 따른 기계적 물성을 정확히 예측하는 동시에 예측의 불확실성 정보를 제공하며 이 두 정보를 활용해 실제 3D프린팅을 진행할 가치가 높은 공정변수를 추천한다. 3D프린팅 기술 중에서도 레이저 분말 베드 융합은 뛰어난 강도 및 생체 적합성으로 유명한 Ti-6Al-4V 합금을 제조하기 위한 혁신적인 기술이다. 그러나 3D프린팅으로 제작된 이 합금은 강도와 연성을 동시에 높이기 어렵다는 문제점이 있다. 3D프린팅의 공정변수와 열처리 조건을 조절해 이를 해결하고자 하는 연구들이 있었지만, 방대한 공정변수 조합들을 실험 및 시뮬레이션으로 탐색하기에는 한계가 있었다. 연구팀이 개발한 능동 학습(Ac
2025-02-21최근 인공지능, 빅데이터, 생명과학 등 연구에 사용되는 메모리 대역폭이 차지하는 비중이 높아, 메모리 내부에 연산장치를 배치하는 프로세싱-인-메모리(Processing-in-Memory, 이하 PIM) 반도체에 대한 연구개발이 활발히 진행되고 있다. 국제 공동 연구진이 기존의 PIM 반도체가 내부장치를 활용하면서도 통신을 할때 반드시 PIM 반도체 외부로 연결되는 CPU를 통해야한다는 문제점으로 발생한 병목현상을 해결했다. 우리 대학 전기및전자공학부 김동준 교수 연구팀이 미국 노스이스턴 대학(Northeastern Univ.), 보스턴 대학(Boston Univ.)와 스페인 무르시아 대학(Universidad de Murcia)의 저명 연구진과‘PIM 반도체 간 집합 통신에 특화된 인터커넥션 네트워크 아키텍처’를 통한 공동연구로 PIM 반도체의 통신 성능을 비약적으로 향상하는 기법을 개발했다고 19일 밝혔다. 김동준 교수 연구팀은 기존 PIM 반도체가
2025-02-19우리 대학 전기및전자공학부 김정호 교수가 회로·시스템 분야 '2025년 강대원 상'을 한국반도체학술대회 상임운영위원회로부터 수상한다. 김 교수는 HBM 개발에 기여한 공로를 인정받아 SK하이닉스 이강욱 부사장과 함께 수상한다. 시상식은 13일 오후 강원도 하이원그랜드호텔에서 한국반도체산업협회 · 한국반도체연구조합 · DB하이텍이 공동으로 주관, 개최하는 ‘제32회 한국반도체학술대회(KCS 2025)’ 개막식에서 진행된다. 강대원 상은 세계 최초로 모스펫(MOSFET)과 플로팅게이트를 개발해, 반도체 기술 발전에 신기원을 이룩한 고(故) 강대원 박사를 기리기 위해 제정되었으며, 한국반도체학술대회 상임운영위원회가 지난 2017년 열린 제24회 반도체 학술대회부터 강대원 박사를 이을 인재들을 발굴, 선정해서 시상하고 있다. 김정호 교수는 ‘HBM 아버지’로 불리는 인공지능 반도체 분야의 세계적 권위
2025-02-12