< (왼쪽부터) 생명과학과 유정민 박사, 이광록 교수 >
중증급성호흡기증후군(이하 SARS) 코로나바이러스와 같은 코로나 19(COVID-19)는 전 세계적 팬데믹으로 짧은 시간 안에 확산되었지만 왜 급격히 복제돼 빠르게 전염되는지 기전이 아직까지 규명되지 않았다. 우리 연구진이 코로나바이러스 핵심 효소 단백질(헬리케이스)의 복제과정이 급격히 촉진되어 전염되는 메커니즘을 밝혀내며 바이러스 백신 및 치료제 개발에 새로운 가능성을 제시했다.
우리 대학 생명과학과 이광록 교수 연구팀이 nsp13 단백질*은 두 가지 활성을 가지고 있어 시너지 효과를 내며, 이를 통해 SARS 코로나바이러스의 유전물질인 RNA 복제를 촉진한다는 기전을 규명했다고 17일 밝혔다.
*nsp13 단백질: SARS 코로나바이러스의 헬리케이스로, 바이러스가 증식하는 데 필수적인 유전자 복제와 전사 과정에 중요한 효소이다. 헬리케이스는 마치 지퍼를 열고 닫는 것처럼 DNA나 RNA의 꼬인 구조를 풀어주는데, 유전정보를 읽거나 복제할 때 유전물질을 먼저 풀려야 하므로 필수적이다. 쉽게 말해, 헬리케이스는 엉킨 실타래를 푸는 효소단백질이다.
여기 두 가지 활성에 해당되는 첫번째 헬리케이스 활성은 DNA 또는 RNA와 같은 이중 가닥 핵산을 단일 가닥으로 풀어주는 효소 기능이며, 복제나 전사 과정을 촉진시킨다. 두번째 RNA 샤페론 활성은 핵산 구조의 올바른 접힘(folding)과 풀림 기능을 돕는 단백질로, 잘못된 RNA를 교정하거나 안정성을 향상시켜 세포 내 RNA 대사과정을 돕는 역할을 한다.
코로나바이러스가 빠르게 전파하기 위해서는 바이러스의 유전물질을 빠르게 복제하고 구성성분인 단백질을 생산해서 이들을 조합하는 것이 필수적이다.
연구팀은 첫 번째 단계인 유전물질의 RNA 복제가 다른 바이러스에 비해 왜 빠르게 일어나는지 알려지지 않았으나, nsp13 단백질이 기존의 헬리케이스 활성과 이제까지 알려지지 않은 새로운 샤페론 활성으로 유전자 복제 과정을 빠르게 촉진한다는 것을 규명했다.
nsp13 단백질은 유전적으로 잘 보존되어 다양한 변이 코로나바이러스에 대응하는 백신이나 감염 치료의 중요 표적이지만, 정확한 작용 메커니즘에 대해서는 완전한 이해가 부족했다.
< 그릠 1. nspl3 단백질의 기질에서 두 가지 방식을 통한 협동적 풀림 활성 모식도 >
연구팀은 nsp13 헬리케이스가 ATP(아데노신 삼인산)*를 분해하여 나온 화학에너지를 이용하여 유전물질인 RNA의 꼬인 구조를 단일 가닥으로 풀어주고 부산물로 ADP(아데노신 이인산)*가 생성하게 된다. 이때 생성된 ADP가 nsp13와 재결합하게 되면 샤페론 기능을 활성화시켜 RNA 이차구조를 추가로 불안정화한다는 사실을 알아냈다.
*ATP(아데노신 삼인산)는 충전된 배터리처럼 에너지를 담고 있고 효소가 일을 할 때는 에너지를 공급해준다. ATP는 인산 3개를 가지고 있어 인산이 분해 될 때 에너지를 방출하고 인산 2개를 가진 ADP(아데노신 이인산)를 부산물로 생성한다.
결론적으로 헬리케이스 활성과 샤페론 활성이 시공간적으로 동시에 협력해 RNA 복제를 촉진하게 된다는 새로운 방식의 작용기전을 규명했다.
이광록 교수는 “이번 연구는 대표적 핵산-효소 단백질인 헬리케이스가 ADP를 통해 샤페론적 활성을 나타내는 새로운 발견이며, 이를 통해 헬리케이스의 기능 다양성에 대한 이해의 폭을 넓혀주고, SARS 코로나바이러스의 다양한 변이에 대응할 효과적 치료제 및 백신 개발의 실마리를 제공할 것으로 기대한다”라고 연구 결과의 의의를 밝혔다.
이 연구는 유정민 박사가 제 1저자로 세계적 국제학술지 ‘핵산 연구 (Nucleic Acids Research)’ (IF: 16.7, 생화학 및 분자생물학 분야 상위 1.8%) 온라인판에 1월 29일 게재됐다. (논문명 : A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase) (doi: 10.1093/nar/gkaf034)
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구지원, 선도연구센터 지원사업, 글로벌 기초연구 지원사업과 합성생물학핵심기술개발사업의 지원을 받아 수행됐다.
인류와 전염병의 전쟁에서 수학은 최적의 방어막 구축을 위한 과학적 근거를 제시해왔다. 우리 대학 김재경 교수 연구팀은 국가수리과학연구소 최선화 선임연구원, 고려대 최보승 교수, 경북대 이효정 교수팀과 공동으로 정확도를 획기적으로 높인 전염병 확산 예측 모델을 새롭게 제시했다. 미지의 바이러스가 나타나면 과학자들은 구조와 실체를 파악하고, 제약사는 바이러스에 대항할 백신과 치료제를 개발한다. 바이러스를 제압할 무기를 만드는 동안, 방역은 국민을 보호하고 피해를 최소화하는 방어막 역할을 한다. 피해를 정확하게 예측하고, 의료진을 배치하고, 병상을 확보하는 등 대책 수립에 수학이 쓰인다. 코로나19 팬데믹은 수리 모델 기반 전염병 확산 모델의 중요성을 재조명하게 해준 사례다. 이를 통해 추정한 감염재생산지수(R값), 잠복기, 감염기 등 변수들은 질병의 확산 양상을 이해하고, 방역 정책을 설계하는 데 중요한 요소로 작용했다. 그러나 기존 모델에는 한계가 있었다. 기존 대부분 모델은
2024-10-17코로나19 팬데믹으로 어려움을 겪고 있던 지역 소상공인들을 지원하기 위해 시행된 재난지원금이 실제로 지역 경제에 긍정적인 영향을 미쳤는지 우리 연구진이 분석했다. 분석 결과, 소상공인 매출 증가는 지역 내 소비 확산으로 이어져 지역 상권에도 긍정적인 영향을 주었음을 밝혀냈다. 우리 대학 기술경영학부의 김지희 교수팀이 코로나19 재난지원금이 소상공인 매출에 미친 영향을 실증적으로 분석했다고 16일 밝혔다. 연구진은 경기도와 인천이 서로 다른 정책을 추진했다는 점에 착안하여 연구를 진행했다. 경기도는 코로나19 초기인 2020년 4월부터 모든 주민에게 재난지원금을 지급했고, 해당 금액은 오직 지역 소상공인 가게에서만 사용할 수 있도록 제한됐다. 반면, 인천은 같은 시기에 재난지원금을 지급하지 않았다. 연구 결과, 인천과 비교하여 경기도에서는 소상공인 매출이 재난지원금 지급 후 첫 5주 동안 약 4.5% 증가했으며, 소상공인 총매출 증가분은 재난지원금으로 지급된 예산의 1.
2024-10-16코로나19의 전 세계적 유행 이후, 폐 등 호흡기 질병에 대비하기 위한 mRNA 백신 및 치료제는 차세대 치료제로 주목받고 있다. 하지만 기존 mRNA 백신용 전달체가 가지고 있는 한계점을 극복하고 우리 대학 연구진이 호흡기 바이러스 및 난치성 폐질환의 mRNA 흡입 치료를 가능케 하며 유전자 폐 치료 연구의 근간이 될 연구에 성공했다. 우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 유전자 폐 치료에 최적화된 나노 전달체를 개발했다고 7일 밝혔다. 연구팀은 기존 mRNA 전달을 위해 활용되던 지질나노입자(이하 lipid nanoparticle, LNP)의 에어로졸화 과정에서의 불안정성과 폐 미세환경에서의 낮은 전달 효율을 해결하기 위해 이온화성 지질나노복합체(ionizable lipocomplex, iLPX)를 개발했다. iLPX는 이온화성 리포좀의 외부에 mRNA를 결합한 형태로, 에어로졸화 과정에서 입자의 구조를 유지하기 때문에 흡입 전달에 용이하다. 또한, 폐 미
2024-10-10코로나바이러스감염증-19는 3년 4개월 만에 비상사태가 해제됐으나, 잦은 돌연변이로 인해 발생한 변이들이 계속해서 보고되고 있어 재유행이 시작될 가능성은 여전히 남아 있다. 이 변이들은 백신 접종이나 감염으로 인해 숙주가 획득한 기존의 면역반응을 회피하는 방향으로 진화하고 있다. 현재 시판되는 근육 접종 백신으로는 바이러스의 확산을 억제할 수 있는 점막 면역은 충분히 일으키기 어렵다는 한계가 있으므로 장기간 지속되는 강력한 점막 면역을 유도할 수 있는 백신의 필요성은 여전하다. 우리 대학 의과학대학원 이흥규 교수 연구팀과 한국화학연구원(원장 이영국)은 아데노바이러스 벡터 플랫폼의 비강 접종 코로나19 백신을 개발하고 마우스 모델을 이용해 이 백신이 장기간 지속되는 강력한 점막 면역을 유도함을 규명했다고 29일 밝혔다. 점막 면역이란 면역 체계를 구성하는 요소 중에서도 호흡기, 소화기, 생식기관 등을 구성하는 체내 상피 조직인 점막에서 작용하는 면역을 말한다. 이는 체내와
2023-07-01엔데믹(endemic)으로 지정된 코로나 19 바이러스(이하 SARS-CoV-2)는 변이가 매우 빈번하고 빠른 RNA 바이러스이다. 따라서 전 세계 연구자들은 신·변종 바이러스 출현에 따른 새로운 팬데믹에 대비하기 위해 범용 코로나 바이러스 감염병 치료제 개발에 몰두하고 있다. 우리 대학 생명과학과 허원도 교수 연구팀과 전북대 강상민 교수 연구팀이 공동연구를 통해 세계 최초로 RNA 유전자 가위 기술을 이용해 RNA 바이러스 유전체 내 슈도낫 부위를 타겟해 바이러스 증식을 강력하게 차단할 수 있는 핵심 타겟부위를 발견했고, 전북대학교 인수공통감염병 연구소와의 협업을 통해 동물모델에서 COVID-19 치료 효과를 입증했다고 1일 밝혔다. 우리 대학 자연과학연구소 유다슬이 연구조교수, 전북대학교 한희정 박사과정, KAIST 생명과학과 유정혜 박사과정, KAIST 생명과학과 김지혜 선임연구원이 공동 제 1저자로 수행한 이번 연구는 저명 국제 학술지 ‘몰레큘러
2023-05-02