< (왼쪽부터) 신소재공학과 김홍준 박사, 홍승범 교수 >
우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(AFM, Atomic Force Microscope)을 이용해 배터리 전극의 구성성분 분포를 파악하는 영상화 기법을 개발하는 데 성공했다.
관련 기술은 차세대 배터리로 주목받는 전고체전지 설계를 용이하게 할 수 있고 다른 전기화학 소재에도 제조 공정을 크게 혁신하는 토대가 될 것으로 기대된다.
김홍준 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)'지 4월 27일 字에 게재됐다. (논문명: Visualization of Functional Components in a Lithium Silicon Titanium Phosphate-Natural Graphite Composite Anode)
리튬이온전지는 휴대용 장비와 전기자동차 등 여러 분야에서 강력한 전기 에너지저장장치(ESS)로 사용되고 있다. 그러나 액체나 젤 형태의 전해질을 사용하는 리튬이온전지는 충격이나 압력으로 인한 발화 가능성이 크고 충전소요 시간이 길어지는 취약점을 안고 있다. 따라서 지난 13일 국내 1, 2위 대기업인 삼성그룹과 현대차 그룹 수장들이 첫 단독 회동을 통해 협업을 논의한 사례에서 보듯 고체 전해질을 이용한 전고체전지가 가장 유망한 차세대 배터리로 주목을 받고 있다.
전고체전지는 양극과 음극 사이의 전해질을 액체가 아닌 고체로 대체한 전지다. 전고체전지는 특히 부피를 절반으로 줄이면서 대용량 구현이 가능해 완전 충전 시 최대 주행거리가 800Km에 달하기 때문에 글로벌완성차 업체와 배터리 업체를 중심으로 기술 상용화를 위한 연구개발(R&D) 움직임이 활발하다.
다만 전고체전지가 차세대 배터리로 확고히 자리를 잡기 위해서는 낮은 이온전도도와 전극-전해질 계면의 접합성 문제를 해결해야 한다. 이를 위해 리튬이온전도체가 분산된 복합 전극에 관한 연구가 활발히 진행되고 있다. 또 전지 구동 성능에 큰 영향을 미치는 복합 전극의 재료적 특성을 이해하기 위해서는 미시적 규모로 혼합된 활물질, 이온전도체, 바인더 그리고 도전재와 같은 구성성분들의 형상과 분포를 파악할 수 있는 기술이 필요하다.
홍승범 교수 연구팀이 개발한 영상화 기법은 이러한 문제점들을 거시·미시적 다중 스케일에서 전기화학 변위 현미경과 횡력 현미경 등 원자간력 현미경의 다양한 기능을 활용해 위치에 따른 검출 신호의 감도 차이로 구성성분들의 영역을 구별해 해결했다. 기존 전극과 복합 전극을 비교해서 결과를 제시했으며, 영역들의 구별뿐만 아니라 단일 영역 내에서 나노 스케일의 이온 반응성 세기 분포와 마찰력 세기 분포의 상관관계 파악을 통해 바인더 구성 비율이 이온 반응성에 미치는 영향을 파악했다.
또 기존 전자 현미경을 이용해 관찰할 경우, 진공 환경이 필수적으로 필요하고, 분석을 위한 시편 제작 시 매우 얇은 막 형태로 제작 및 백금 입자를 코팅해야 하는 등 특별한 사전처리 절차가 필요했다. 반면 홍 교수 연구팀이 이번 연구를 통해 제시한 관찰 방법은 일반적인 환경에서 수행할 수 있고, 특별한 사전처리 절차가 필요하지 않다. 이와 함께 다른 영상화 장비보다 관찰의 준비 과정이 편리하며, 공간 분해 능력과 검출 신호의 세기 분해 능력이 월등하고, 성분 관찰 시에는 3차원 표면 형상 정보가 제공된다는 장점이 있다.
< 그림 1. 다양한 기능을 활용한 원자간력 현미경 분석 기술의 모식도 >
< 그림 2. 전극 표면에서 구별된 영역들을 나타내는 이미지와 각 영역에서 감도 차이를 보여주는 경향 그래프 >
홍승범 교수는 "원자간력 현미경을 이용해 개발된 분석 기법은 복합 소재 내의 각 구성성분이 물질의 최종적인 성질에 기여하는 역할을 정량적으로 이해하는 데 유리하다ˮ 면서 "이 기술은 차세대 전고체전지의 설계 방향을 다중 스케일에서 제시할 뿐만 아니라, 다른 전기화학 소재의 제조 공정에도 혁신의 기틀을 마련할 수 있을 것으로 기대된다ˮ 고 강조했다.
한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업, 웨어러블 플랫폼 소재 기술센터 지원 기초연구사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
차세대 반도체 메모리의 소재로 주목을 받고 있는 강유전체는 차세대 메모리 소자 혹은 작은 물리적 변화를 감지하는 센서로 활용되는 등 그 중요성이 커지고 있다. 이에 반도체의 핵심 소자가 되는 강유전체를 화학물질없이 식각할 수 있는 연구를 성공해 화제다. 우리 대학 신소재공학과 홍승범 교수가 제네바 대학교와 국제공동연구를 통해 강유전체 표면의 비대칭 마멸* 현상을 세계 최초로 관찰 및 규명했고, 이를 활용해 혁신적인 나노 패터닝 기술**을 개발했다고 26일 밝혔다. *마멸: 물체 표면의 재료가 점진적으로 손실 또는 제거되는 현상 **나노 패터닝 기술: 나노스케일로 소재의 표면에 정밀한 패턴을 생성하여 다양한 첨단 기술 분야에서 제품 성능을 향상시키는데 사용되는 기술 연구팀은 강유전체 소재의 표면 특성에 관한 연구에 집중했다. 이들은 원자간력 현미경(Atomic Force Microscopy)을 활용해 다양한 강유전체의 트라이볼로지(Tribology, 마찰 및 마모) 현상
2024-03-26김범준 생명화학공학과 교수가 우리 대학인 주관하고 현우문화재단(이사장 곽수일, 서울대학교 경영대학 명예교수)이 후원하는 `현우 KAIST 학술상' 수상자로 선정됐다. 시상식은 이달 16일 오전 10시 KAIST 학술문화관 정근모 홀, 리서치데이 행사에서 개최된다. 올해로 3회째 시행되는 `현우 KAIST 학술상'은 현우문화재단 곽수일 이사장이 KAIST에서 우수한 학술적 업적을 남긴 학자들을 매년 포상하고자 기부한 재원을 통해 제정된 상이다. 우리 대학은 현우재단 선정위원과 KAIST 교원포상추천위원회의 엄격한 심사를 거쳐 KAIST를 대표할 수 있는 탁월한 학술 업적을 이룬 교원을 매년 1명 선정해 상패와 포상금 1,000만원을 시상할 계획이다. 올해의 수상자로 선정된 김 교수는 고무처럼 늘어나면서도 이온 전달 특성이 매우 우수한 새로운 개념의 고분자 전해질 소재를 개발했고, 이를 이용해서 세계 최고 수준의 성능을 가지는 전고체전지를 구현하는 데 성공했다. 본 연구는
2023-05-16고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다. 하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케
2022-11-08우리 대학 생명화학공학과 김범준 교수 연구팀이 미국 조지아공대(Georgia Tech) 이승우 교수팀과 공동연구를 통해 새로운 개념의 엘라스토머 고분자 전해질을 개발하고 이를 통해 세계 최고성능의 전고체전지를 구현했다고 13일 밝혔다. 우리 대학 한정훈 및 조지아공대 이승훈 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처(Nature)' 1월 13일에 출판됐다. (논문명: Elastomeric electrolytes for high-energy solid-state lithium batteries). 전고체 리튬메탈전지(all-solid-state Li-metal battery)는 이차전지에 사용되는 휘발성이 높은 액체전해질을 고체로 대체해 화재 및 자동차 안전사고를 막을 수 있는 미래기술로서, 현재 상용화된 리튬이온전지(Li-ion battery)에 비해 에너지밀도를 획기적으로 향상해 자동차 주행거리 확보 및 안전 문제를 해결할 수 있는 `꿈의 배터리
2022-01-13우리 연구진이 여름철 자주 찾는 청량음료가 치아 건강에 해롭다는 사실을 과학적으로 뒷받침하는 논문을 발표했다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 청량음료가 치아에 미치는 기계적 특성, 즉 거칠기(roughness)와 탄성 계수(elastic modulus) 변화를 원자간력 현미경(AFM, Atomic Force Microscopy)으로 관측하고 이를 영상화하는 데 성공했다고 21일 밝혔다. ☞ 원자간력 현미경(AFM): 대표적인 주사형 프로브 현미경(SPM, Scanning Probe Microscope, SPM)의 하나로, 캔틸레버(cantilever) 끝에 설치돼있는 뾰족한 프로브와 시료 표면 간에 작용하는 원자간력을 이용해 시료 표면의 삼차원 상을 얻는 장치 ☞ 거칠기: 재질 표면에 나 있는 규칙 또는 불규칙한 요철의 정도 ☞ 탄성 계수: 인장력 또는 압축력에 대한 재료의 저항 정도 원자간력 현미경은 나노미터(nm, 100만분의 1 밀리미터) 수준의
2020-07-22