-
화재 위험 차단한 자가발전형 수소 생산 시스템 개발
현재 그린 수소 생산의 한계를 극복할 새로운 수소 생산 시스템을 KAIST 연구진이 개발하여 수용성 전해질을 사용한 물분해 시스템을 활용해 화재의 위험을 차단하고 안정적인 수소 생산이 가능할 것으로 예상된다.
우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 아연-공기전지* 기반의 자가발전형 수소 생산 시스템을 개발했다고 22일 밝혔다.
*공기전지: 일차 전지 중 하나로 공기 중 산소를 흡수해 산화제로 사용하는 전지이며, 수명이 긴 것이 장점이지만 기전력이 낮은 것이 단점임.
수소(H2)는 고부가가치 물질 합성의 원료로 기존 화석연료(휘발유, 디젤 등) 대비 3배 이상 높은 에너지밀도(142MJ/kg)를 지녀 청정 연료로 주목받고 있다. 그러나 현재 수소 생산 방식 대부분 이산화탄소(CO2)를 배출하는 문제가 있다.
아울러 그린 수소 생산은 태양전지, 풍력 등 신재생에너지를 동력원으로 물을 분해해 수소의 생산이 가능하나, 신재생에너지 기반의 동력원은 온도, 날씨 등에 영향을 받아 불규칙한 발전량에 따른 낮은 물 분해 효율을 보인다.
이를 극복하기 위해 물 분해를 통한 수소 생산에 충분한 전압(1.23V 이상)을 방출할 수 있는 공기전지가 동력원으로 주목받고 있지만, 충분한 용량 구현을 위해 귀금속 촉매를 사용해야 하고, 장시간 충·방전시 촉매 소재의 성능이 급격히 저하되는 한계가 있다.
이에 물 분해 반응(산소 발생, 수소 발생)에 효과적인 촉매와 반복적인 아연-공기전지 전극의 충·방전 반응(산소 환원, 산소 발생)에 안정적인 물질의 개발이 필수적이다.
이에 강 교수 연구팀은 산화 그래핀에 성장시킨 나노 사이즈의 금속-유기 골격체를 활용해 3가지 다른 촉매반응(산소 발생-수소 발생-산소 환원)에 모두 효과적인 비귀금속 촉매 소재(G-SHELL)의 합성법을 제시했다.
연구팀은 개발된 촉매 물질을 공기전지의 공기극 물질로 구성해 기존 배터리 대비 약 5배 높은 에너지밀도(797Wh/kg), 높은 출력 특성(275.8mW /cm²), 그리고 반복적인 충·방전 조건에서도 장시간 안정적인 구동이 가능함을 확인했다.
또한 수용성 전해질로 구동돼 화재의 위험으로부터 안전한 아연-공기전지는 차세대 에너지 저장 장치로서 수전해 시스템과 연동시켜 수소 생산을 위한 친환경적인 방법으로 적용할 수 있을 것으로 기대된다.
강 교수는 “낮은 온도, 간단한 방법으로 3가지 다른 전기화학 촉매반응에서 높은 활성도와 수명을 지닌 촉매 소재를 개발해 구현된 아연-공기전지 기반 자가발전형 수소 생산 시스템은 현재 그린 수소 생산의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다”고 밝혔다.
신소재공학과 김동원 박사과정과 김지훈 석사과정이 공동 제1 저자로 참여한 이번 연구 결과는 융복합 분야(MATERIALS SCIENCE, MULTIDISCIPLINARY)의 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 9월 17일 字 게재됐다.
(논문명: Trifunctional Graphene-Sandwiched Heterojunction-Embedded Layered Lattice Electrocatalyst for High Performance in Zn-Air Battery-Driven Water Splitting)
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2024.10.22
조회수 1178
-
단백질 ‘생산 설계도’ 보호하는 RNA 조절 기전 찾았다
생명체는 DNA, RNA, 단백질과 같은 바이오분자들의 조절 작용으로 다양한 생물학적 기능을 수행한다. 바이오분자들의 조절로 유전 정보가 전달되고, 잘못 전달된 정보는 유전자 변형이나 감염성 질병의 원인이 된다. 따라서 분자생물학적 조절 연구는 유전자 치료제와 첨단 백신 개발에 중요하다. 특히, 2023년 코로나 mRNA 백신 기술을 개발한 과학자들이 노벨 생리의학상을 수상하면서 RNA 조절 연구에 기반한 첨단신약, 바이오공학 기술이 크게 주목받고 있다.
우리 대학 바이오및뇌공학과 이영석 교수 연구팀이 기초과학연구원(IBS) RNA 연구단 김빛내리 단장(서울대 생명과학부 석좌교수), 미국 국립암연구소 유진 발코프(Eugene Valkov) 박사팀과 공동연구를 통해 자체 개발한 단일핵산 분석법을 적용해 전령 RNA(messenger RNA, 이하 mRNA) 분해의 새로운 조절 기전을 찾았다고 밝혔다.
mRNA는 긴 단일 가닥 RNA 분자로, DNA에 보관된 유전 정보를 단백질에 전달하는 매개체로서 마치 단백질의 ‘생산 설계도’와 같다. 예를 들어, 코로나 mRNA 백신은 약 4,000개의 RNA 분자로 이루어져 있으며, 코로나 스파이크 단백질의 유전 정보와 다양한 RNA 변형을 활용해 스파이크 단백질 생산을 조절하도록 설계되어 있다. 결국 RNA 기능과 조절에 따라 유전자 치료제 및 mRNA 백신의 효능이 결정된다.
연구진은 다양한 RNA 조절 인자 중 특히 mRNA 꼬리에 주목해 왔다. mRNA는 말단에 50-150개의 아데닌 염기로 구성된 긴 꼬리를 갖는데, mRNA를 보호하고 단백질 합성을 촉진하는 역할을 한다. 그동안 이 꼬리는 아데닌으로만 구성된 것으로 알려졌지만, 연구진은 지난 연구에서 비(非) 아데닌 염기가 추가된 ‘혼합 꼬리(Mixed tail)’가 존재한다는 사실을 보고하였고, 이 혼합 꼬리가 mRNA의 분해를 막는 역할을 하여 유전자 활성을 높이는 데 기여함을 밝힌 바 있다.
그러나 RNA 변형의 결과인 mRNA 꼬리는 그 변형의 특이적인 행태로 인해 생화학 실험과 정량적 분석에 어려움이 있었다. 또한, 50-150개 RNA 분자의 연속적인 변형에 대한 단일염기 분석이 필요하여 mRNA 혼합 꼬리 조절 기전 연구에 제한이 있었다.
이를 해결하기 위해 연구진은 미국 국립암연구소 유진 발코프 박사 연구팀과 함께 mRNA 꼬리 조절 연구를 위한 단일핵산 분석법을 개발했다. 이어 이 분석법을 활용하여 세계 최초로 mRNA 꼬리가 분해되는 속도를 단일핵산 단위로 측정하는데 성공, mRNA 꼬리의 새로운 분해 기전을 규명했다.
연구진은 mRNA 분해를 유도하는 탈아데닐 복합체(CCR4-NOT)를 이용한 탈아데닐화 시스템을 개발하고 단일 염기 단위의 분해 반응을 수학적으로 모델링하여 혼합 꼬리 분해 효과를 정량화했다. 그 결과, 탈아데닐 복합체의 진행이 지연되는 위치를 확인할 수 있었으며, 복합체의 구성 요소들이 비 아데닌 염기에 의해 특정 위치에서 막혀 분해 속도가 조절되는 것을 밝혔다. 즉, 비 아데닌 염기가 일종의 ‘과속 방지턱’ 역할을 한다는 것을 입증한 것이다.
김빛내리 단장은 “mRNA 혼합 꼬리 조절에 대한 이해를 확장해 mRNA 안정성 조절과 유전자 발현 메커니즘에 대한 새로운 통찰을 제공했다”라며, “혼합 꼬리에 기반한 다양한 유전자 치료법 연구와 RNA 첨단 신약 개발에 기여할 것”이라고 말했다.
우리 대학 바이오및뇌공학과 이영석 교수는 “이번 연구는 분자생물학, 생화학 및 수학 분야가 만나 이룬 융합 연구의 결실”이라며, “미래 바이오공학 및 첨단바이오 분야 발전을 위한 공동연구의 중요성을 시사한다”라고 연구의 의의를 밝혔다.
이번 연구결과는 국제 학술지 ‘네이처 구조 분자생물학(Nature Structural & Molecular Biology, IF=16.8)’에 지난 2월 19일 게재됐다.
2024.02.28
조회수 3591
-
반도체 기술로 75배 향상된 초고효율 수소 생산 성공
반도체 공정기술을 활용하여 세계 최고 수준의 높은 수소 생산 효율을 장기간 유지하는 기술이 개발되어 화제다.
우리 대학 신소재공학과 정연식 교수·KIST(원장 윤석진) 김진영 박사·김동훈 박사 공동 연구팀이 수소 생산 촉매가 반응 중 잃어버리는 전자를 신개념 산화물 반도체로부터 보충받는 새로운 원리를 활용해 고효율 및 고내구성 수소 생산 기술을 개발했다고 25일 밝혔다.
고순도 그린 수소를 생산하기 위해 신재생에너지로 물을 전기분해하는 친환경적인 고분자 전해질막 수전해(PEMWE) 장치를 활용하게 된다. 이때 주로 사용되는 이리듐(Ir) 촉매의 경우 전자를 많이 가지고 있는 상태를 지속적으로 유지해야 고효율과 고내구성을 동시에 달성할 수 있게 된다. 하지만 일반적으로 쉽게 전자를 잃어버리고 산화되는 촉매 반응의 특성 때문에 효율과 수명이 현저히 저하되는 고질적인 문제가 있었다.
KAIST-KIST 공동 연구팀은 초미세 패턴을 적층하여 3차원 네트워크 구조를 구현할 수 있는 반도체 기술을 활용하였다. 이때 사용한 물질은 안티모니(Sb)가 도핑된 주석 산화물이며, 이 산화물 표면에는 ‘전자 저장소’역할을 하는 산소 이온이 고농도로 분포하도록 반도체 증착 기술을 적용하였다. 이 독특한 산화물 반도체를 촉매 지지체로 사용하게 되면 표면에 위치한 산소 이온이 이리듐(Ir) 촉매로 충분한 양의 전자를 지속적으로 보충해 줌으로써 촉매의 높은 수소 생산 효율을 장기간 유지해 주게 된다.
연구팀은 이를 고분자 전해질막 수전해(PEMWE) 장치에 적용한 결과, 기존 이리듐(Ir) 상용 나노입자 촉매에 비해 최대 75배 개선된 세계 최고 수준의 성능 향상을 달성함과 동시에 높은 전류 밀도에서 장시간 구동하는 우수한 내구성 또한 확보했다.
우리 대학 정연식 교수는 “일반적으로 반도체 기술과 수소 생산은 크게 다른 분야로 여겨지지만, 기존 합성 기술로는 얻기 어려운 독특한 조성의 소재를 정밀 반도체 공정 기술로 구현함으로써 높은 효율을 달성할 수 있었고, 이는 기술 분야 간 융합의 중요성을 잘 보여주는 연구 사례”라고 덧붙였다. KIST 김진영 박사는“기존 귀금속 촉매량의 1/10 이하만 사용하고도 동등 이상의 성능을 달성해, 앞으로 추가 연구를 통해 그린 수소 생산의 경제성을 확보할 수 있을 것으로 기대된다”고 언급했다.
신소재공학과 이규락 학생, KIST 김준 박사, 홍두선 박사가 공동 제1 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스(Nature Communications)' 9월 5일 字 온라인판에 게재됐다. (논문명: Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts)
이번 연구는 산업자원통상부 에너지혁신인재양성사업, 과학기술정보통신부 미래수소원천기술개발사업, 그리고 과학기술정보통신부 나노소재기술개발 사업 등의 지원을 받아 수행됐다.
2023.09.25
조회수 5580
-
돼지표피에서 추출한 젤라틴 활용해 고성능 고체산화물 연료전지 개발
우리 대학 기계공학과 이강택 교수 연구팀이 돼지 표피에서 추출한 젤라틴을 활용해 수백 나노 수준의 매우 얇은 고 치밀성 다중도핑 세라믹 박막 제조 기술을 적용한 고성능의 양방향 고체산화물 연료전지 개발에 성공했다고 8일 밝혔다.
양방향 고체산화물 연료전지(R-SOFC)는 하나의 연료전지 소자에서 수소 생산과 전력생산이 모두 가능한 시스템으로서 탄소중립 사회 실현을 위해 필수적인 에너지 변환장치다.
이러한 에너지 소자의 성능을 높이기 위해서는 700oC 이하의 중저온에서 고활성을 갖는 전극의 개발이 필수적이며, 이를 위해 코발트 기반 페로브스카이트 전극이 집중적으로 연구돼왔다. 하지만 이러한 코발트 기반 전극 소재는 범용으로 사용되는 지르코니아(ZrO2) 전해질과 고온에서 화학반응을 일으켜 성능을 저하하는 문제가 있다. 이를 해결하기 위해 전극과 전해질 사이에 세리아(CeO2) 기능층을 도입하는 연구가 진행돼왔지만, 세리아와 지르코니아 사이의 반응을 억제하기 위해서 공정온도가 제한되며 이로 인해 두꺼운 다공성 구조를 갖게 되어 연료전지의 성능 및 안정성이 저하된다는 문제가 있었다.
이 교수 연구팀은 이 연구에서 젤라틴을 활용해 매우 얇으면서도 치밀한 다중도핑의 세리아 나노박막 제조 공정기술을 개발해 양방향 고체산화물연료전지에 기능층으로 적용하는 데 성공했다. 전기화학 및 구조 분석을 통해 치밀한 기능층의 도입으로 산소이온의 이동경로가 크게 감소하며 전기화학적 활성영역이 크게 증가함을 확인했다. 또한 개발된 양방향 연료전지는 기존 공정을 적용한 연료전지 대비 2배 이상 높은 성능을 보였으며 동일소재를 사용한 연료전지 중 가장 높은 성능(3.5 W/cm2, 750oC) 을 나타냈으며, 수소 생산도 세계 최고성능을 발휘했다. 또한, 개발된 연료전지 소자는 1,500시간 동안 열화 없이 구동돼 매우 높은 안정성을 갖고 있음을 실증했다.
이강택 교수는 "이번 연구에서 사용된 공정들은 대면적 양산시스템에도 쉽게 적용할 수 있는 기술들이기 때문에, 탄소중립 실현을 위한 고성능 양방향 연료전지 상용화에 본 기술을 적용할 수 있을 것ˮ이라며 연구의 의미를 강조했다.
기계공학과 유형민 석사과정, 임하니 박사후연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지인 `어드벤스드 펑셔널 머티리얼스, Advanced Functional Materials' (IF : 19.924) 지난 9월 8일 字 온라인판에 게재됐다. (논문명 : Exceptionally High-performance Reversible Solid Oxide Electrochemical Cells with Ultra-thin and Defect-free Sm0.075Nd0.075Ce0.85O2-���� Interlayers). 또한 해당 논문은 연구의 파급력을 인정받아 표지논문 (Front cover)으로 선정됐다.
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업, 나노 및 소재 기술개발사업, 그리고 기후변화대응기술개발사업의 지원으로 수행됐다.
2022.12.08
조회수 6957
-
온실가스 감소·수소 생산성 높일 촉매 개발
우리 대학 생명화학공학과 자패르 야부즈(Cafer T. Yavuz) 교수 연구팀이 장시간 사용해도 코킹(coking)과 소결(sintering) 현상이 발생하지 않는 메탄의 건식 개질 반응(dry reforming of methane) 촉매를 개발했다.
연구팀의 기술은 온실가스의 가장 큰 부분을 차지하는 이산화탄소와 메탄을 이용해 합성가스를 생산할 수 있는 기술로, 지구온난화 해결에 이바지할 것으로 기대된다. 또한, 개발된 촉매는 비활성화 없이 안정적으로 합성가스를 생산할 수 있어 수소 생산성 향상 및 합성가스 생산비용 절감 등의 효과를 기대할 수 있다. 야부즈 교수 연구팀은 단결정 마그네슘 산화물의 꼭짓점에서 탄소가 자라는 현상을 발견하고 이를 막기 위해 니켈 기반의 니켈-몰리브데넘 합금 나노입자를 올리는 방법을 설계했다. 이러한 기술은 향후 다른 개질 반응 및 기존의 수소 생산반응인 메탄의 습식 개질 반응에도 직접 적용이 가능할 것으로 기대된다.
송영동 박사과정이 1 저자로 참여한 이번 연구는 국제 학술지 ‘사이언스 (Science)’ 2월 14일 자에 게재됐다.(논문명 : Dry reforming of methane by stable Ni-Mo nanocatalysts on single crystalline MgO)
메탄의 건식 개질 반응은 온실가스인 메탄과 이산화탄소를 동시에 감축할 수 있으면서도 화학산업의 기반이 되는 합성가스를 생산할 수 있어 큰 관심을 받고 있다. 하지만 반응이 진행될수록 촉매의 표면에 탄소가 쌓여 반응성을 낮추는 코킹(coking) 현상과 나노입자가 서로 뭉치게 되는 소결(sintering) 현상 때문에 실제 산업에서 적용에 큰 어려움이 있다.
연구팀은 문제를 해결하기 위해 니켈-몰리브데넘 합금 나노입자를 단결정의 마그네슘 산화물 지지체에 담지했다. 이렇게 제조된 니켈-몰리브데넘 합금 나노입자 촉매는 800도로 온도를 높이는 과정에서 단결정 지지체의 꼭짓점을 막아 안정되는 현상을 보였다. 이는 충분한 열에너지가 공급됐을 때 니켈-몰리브데넘 나노입자가 지지체의 표면을 이동하다가 열역학적으로 불안정한 꼭짓점을 덮은 후 안정화되는 원리임을 규명했다.
연구팀은 개발한 촉매를 온도변화에 민감한 메탄의 건식 개질 반응에 적용하기 위해 온도를 변화시키며 활성도를 측정했다. 그 결과 800도에서 700도까지의 변화 구간에서도 활성도가 안정적인 것으로 나타났으며, 반응 중간에 온도를 상온으로 낮추었다가 재가동해도 활성도에 영향을 주지 않음을 확인했다. 나아가 실제 산업에서 사용하는 반응조건에 적용하기 위해 고압 조건에서 측정한 결과 15바(bar)의 압력에서도 안정적인 것으로 나타났다. 또한, 장시간 안정성 역시 800도에서 850시간 동안 사용 후에도 코킹 및 소결 현상이 발생하지 않는 것으로 확인됐다.
연구팀이 개발한 촉매는 메탄의 건식 개질 반응에 적용할 수 있어 온실가스 감축을 통한 환경문제 해결에 큰 도움을 줄 수 있다. 또한, 현재 수소생산의 90% 이상을 차지하는 메탄의 습식 개질 반응에도 직접 적용이 가능하다. 이를 통해 합성가스 생산비용 절감, 니켈 기반의 저렴한 촉매생산, 성능 강화 등에 이바지할 수 있을 것으로 기대된다.
1 저자인 송영동 박사과정은 “그동안 큰 문제였던 코킹 현상을 값비싼 귀금속이나 복잡한 제조과정 없이 해결할 수 있는 촉매를 개발했다”라며 “단결정 위에서 나노입자가 안정화되는 기술을 다른 지지체와 금속 나노입자를 이용해 적용하면 다양한 문제를 해결할 수 있을 것이다”라고 말했다.
이번 연구는 사우디 아람코-KAIST CO2 매니지먼트 센터 및 한국연구재단의 지원을 받아 수행됐다.
2020.02.18
조회수 15705
-
이성주 교수, 앱 시제품 제작 생산성 200배 향상 기술 개발
〈 박수영 연구원, 이성주 교수 〉
〈 김동휘 연구원 〉
우리 대학 전산학부 이성주 교수 연구팀 스마트폰 앱 개발에서 필수적인 시제품 제작 과정을 획기적으로 줄여 생산성을 200배 이상 높일 수 있는 기술을 개발했다.
김동휘, 박수영 박사과정, 고지훈 석사과정, 미국 버팔로 대학 스티브 고(Steve Ko) 교수가 참여한 이번 연구 결과는 인간-컴퓨터 상호작용, 사용자 인터페이스 분야 국제학회 ACM UIST에서 10월 21일 발표됐다. (논문명 : X-Droid: A Quick and Easy Android Prototyping Framework with a Single-App Illusion)
새로운 아이디어가 스마트폰 앱으로 만들어지기까지는 수많은 시간과 자원, 인력이 필요하지만 정작 앱을 만들어도 소비자의 수요를 충족시키지 못하거나 시장의 흐름을 놓치면 자원만 낭비하는 경우가 많다.
이러한 이유로 보통은 정식으로 제품을 개발하기 전에 작은 규모로 시제품을 먼저 개발해 시장성을 시험해보곤 한다. 아이디어와 신제품이 범람하는 환경에서 시제품을 빠르고 정확하게 만드는 것이 개발사 입장에서는 매우 중요한 일이다.
시제품 제작에 특화된 도구도 많아 쓰이는 도구, 서비스가 수천 가지가 넘는다. 이는 그만큼 업계에서 시제품 구현에 관심이 많고 수요가 많다는 것을 뜻한다.
그러나 기존에 존재하던 수많은 도구의 도움을 받더라도 결국 기능은 직접 구현해야 한다. 디자인이나 아이디어를 차용할 수는 있어도 프로그램은 시중에 공개되지 않은 이상 전부 직접 만들어야 한다.
이성주 교수 연구팀이 개발한 기술은 바로 이러한 한계를 극복했다. 연구팀은 이미 수백만 개에 달하는 스마트폰 앱들이 시장에 출시된 점에 착안해 새 앱 시제품을 만들 때 기존 앱의 기능을 추출해 활용할 수 있도록 하는 데 성공했다.
앱 개발자는 이 기술을 활용해 다양한 시제품 앱들을 만들어 시험해보고 가장 유용한 안을 선정해 정식으로 개발할 수 있다. 만약 다른 앱에서 추출한 기능을 포함한 시제품 앱을 그대로 출시하고자 한다면 기능을 추출해온 앱 개발자의 동의가 필요하지만, 배포하지 않고 내부에서 시험하는 것만으로도 정식 개발의 실패 가능성을 크게 줄일 수 있다.
연구팀의 기술은 기존 앱에서 필요한 기능이 있을 때 그 앱을 시연하면 자동으로 해당 기능이 추출되고 개발자가 활용할 수 있는 프로그램 코드로 변환된다.
예를 들어 스마트폰 사용자의 수면을 감지해 자동으로 알림을 끄는 기능의 시제품을 만들기 위해서는 수면 상태를 추적하는 복잡한 기술이 필요하지만, 연구팀의 기술을 활용하면 단순히 시중의 수면 분석 앱으로부터 해당 기능을 추출해 시제품 제작에 활용할 수 있다.
연구팀은 현직 스마트폰 앱 개발자와의 실험을 통해 최소 1만 줄 이상의 프로그램 코드 작성이 필요한 개발 과정을 연구팀이 개발한 기술을 적용하면 불과 50여 줄의 코드 작성으로도 시제품을 개발할 수 있음을 확인했다.
이는 시제품 앱 개발에 필요한 프로그램 작성이 200배가량 줄어든 것으로 기존의 스마트폰 앱들을 활용하고 기계가 자동으로 프로그램을 작성하도록 함으로써 개발 비용을 획기적으로 줄인 것이다.
이성주 교수는 “기존 다른 앱의 기능을 코드 없이도 구현할 수 있는 기술로 시연을 통한 프로그래밍 기술을 활용하고 또 다른 앱과의 상호작용이 모두 백그라운드에서 이루어지게 하는 기술이다”라며 “개발자가 실제로는 자신의 앱과 다른 앱을 동시에 다루지만 마치 한 개의 앱으로 작업하는 듯한 효과가 있었으며, 새 앱 기능을 손쉽고 빠르게 구현해 더 많은 유용한 앱 출현을 기대할 수 있게 됐다”라고 말했다.
이번 연구는 한국연구재단 차세대정보컴퓨팅기술개발사업과 산업통상자원부, 한국산업기술진흥원 국제공동기술개발사업의 지원을 통해 수행됐다.
연구에 대한 설명과 시연이 담긴 비디오를 다음 링크에서 확인할 수 있고, ( https://www.youtube.com/watch?v=5pF5kGq-lDU ) 자세한 정보는 프로젝트 웹사이트에서 볼 수 있다. ( https://nmsl.kaist.ac.kr/projects/xdroid/ )
□ 그림 설명
그림1. 연구팀이 개발한 기술이 구현된 개발자 도구
2019.11.12
조회수 15981
-
박용근 교수, 안경 없이 3차원 홀로그래픽 디스플레이 재생기술 개발
〈 박용근 교수 〉
우리 대학 물리학과 박용근 교수 연구팀이 안경 없이도 3차원 홀로그래픽 디스플레이를 재생할 수 있는 기술을 개발했다. 특히, 연구팀의 기술은 초박형 구조로 기존 디스플레이 생산 공정과 호환 가능하며, 대면적 광시야각을 확보해 3차원 디스플레이 기술을 한 단계 진보시켰다.
박종찬 박사(前 KAIST 물리학과 연구원, 現 미국 일리노이 대학교 연구원)가 1저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 21일 자 온라인판에 게재됐다.
특별한 안경 없이 실감 나는 3차원 영상을 재생할 수 있는 홀로그래픽 디스플레이는 오랫동안 꿈의 기술로 여겨져 왔다. 그러나 현재 기술로는 구현할 수 있는 3차원 영상은 크기가 매우 작고 시야각 또한 크게 제한돼 현실적으로 구현이 어렵다.
3차원 홀로그램을 만들기 위해서는 빛의 세기와 빛이 진행하는 방향 모두 정밀하게 변조해야 한다. 빛 진행 방향의 정밀한 변조는 공간광파면 조절기에 의해 이뤄진다.
이때 빛이 진행하는 방향을 넓은 각도에서 정밀하게 제어하기 위해서는 공간광파면 조절기가 많은 픽셀로 이뤄져야 한다. 하지만 현재의 공간광파면 조절기의 픽셀 개수는 실감 나는 3차원 영상을 만들기에 턱없이 부족하다. 즉 빛을 매우 한정된 각도 내에서만 변조할 수 있는 것이다.
이런 조건에서 현재의 기술로 만들 수 있는 3차원 영상은 크기는 약 1센티미터(cm), 시청 가능한 시야각은 약 3도 이내로 제한돼 사실상 실용화가 불가능하다.
오랫동안 과학자들은 실용적인 홀로그램을 만들기 위해 여러 개의 공간광파면 조절기를 합쳐서 이용하거나, 사람이 인식할 수 있는 속도보다 훨씬 빠른 속도로 다량의 홀로그램 이미지들을 조합해 3차원 이미지를 만들었다. 하지만 이러한 방식은 복잡한 시스템을 뒷받침할 수 있는 연구실 환경에서만 구현됐다.
연구팀은 복잡한 광학계를 구성하는 대신 LCD패널과 비주기적으로 설계된 박막을 추가함으로써 기존 방식에 비해 성능이 크게 향상된 3차원 영상을 개발했다. 박막은 비주기적으로 배열된 수많은 구멍(핀홀)으로 구성되는데 핀홀은 빛을 넓은 각도로 퍼뜨리기 때문에 형성된 3차원 영상을 넓은 각도에서 볼 수 있다.
연구팀은 이론에 따라 설계된 박막을 기존 디스플레이의 LCD패널에 부착했고, 실험을 통해 약 3cm×3cm의 화면에서 약 30도의 시야각을 가지는 3차원 홀로그램 영상을 구현하는 데 성공했다.
이는 기존의 Full HD 홀로그래픽 디스플레이로 표현할 수 있는 공간대역폭 보다 약 400배 이상 향상된 결과이다. 또한 3가지 색(적색, 녹색, 청색)을 나타내며 60Hz로 작동하는 동적 홀로그램 역시 구현했다.
박용근 교수 연구팀이 지난 2016년 Nature Photonics지에 보고했던 기술은 산란을 이용해 홀로그래픽 디스플레이 품질을 향상시켰지만, 복잡한 계산과 큰 부피의 장비가 필요했었다. 이후 지속적인 기술 개발을 통해 본 연구에서는 일반 LCD 패널에 비주기적인 박막만 추가하면 제작할 수 있기 때문에, 기존 제조공정에 한 단계를 추가함으로써 상용화에 적합한 기술로 기대된다.
1 저자인 박종찬 박사는 “홀로그래픽 디스플레이의 상용화를 위해서는 넓은 시야각과 큰 영상 크기뿐 아니라 소형 폼팩터를 유지해야 한다. 이번 연구에서는 평면형 디스플레이에서 대면적 광시야각 홀로그래픽 디스플레이를 구현했다”라며 “스마트폰이나 태블릿 등 휴대용 기기에서 홀로그래픽 디스플레이를 구현하는 기반기술이 될 것으로 기대한다”라고 말했다.
□ 그림 설명
그림1. 실제 구현된 3차원 홀로그래픽 디스플레이와 전자현미경 이미지
그림2. 60 Hz로 동작하는 3차원 동적 컬러 홀로그램
2019.03.25
조회수 11788
-
이상엽 교수, 미생물 발효한 친환경 기술로 햄(haem) 생산 기술 개발
〈 이 상 엽 특훈교수 〉
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대장균을 발효시켜 바이오매스로부터 헴(haem)을 생산하고 세포 밖으로 분비할 수 있는 기술을 개발했다.
이는 대사공학 전략을 통해 헴의 생산량을 대폭 높이고 생산된 헴을 효과적으로 세포 바깥에 분비하는 데 성공한 친환경적, 효율적 원천기술로 생산한 헴을 이용해 각종 산업의 확장에 기여할 수 있을 것으로 기대된다.
자오신루이, 최경록 연구원이 참여한 이번 연구는 국제 학술지 ‘네이처 카탈리시스(Nature Catalysis)’ 8월 28일자 온라인 판에 게재됐다.
헴은 생명 유지에 필수적인 철분으로 혈액에서 산소를 운반하는 헤모글로빈이나 세포 호흡에 필수적인 사이토크롬을 비롯한 여러 중요한 단백질 기능에 핵심적 역할을 한다. 특히 인체 흡수율이 높기 때문에 고급 철분제나 약물로 이용된다.
무분별한 가축의 사육이 여러 사회 이슈를 불러일으키는 상황에서 최근 헴이 고기 맛을 내는 핵심 요소로 밝혀지며 콩고기에 미생물이나 식물에서 추출한 헴을 넣어 맛과 영양, 환경 등을 고려한 콩고기 조리법이 주목받기도 했다.
그러나 기존의 헴 생산 방식은 유기 용매를 이용한 동물의 혈액과 일부 식물 조직으로부터의 추출에 의존하고 있기 때문에 비효율적일 뿐 아니라 친환경적이지 않다는 한계가 있다.
대장균을 이용한 헴 생산 기술이 개발된 바 있지만 생산량이 수 밀리그램(mg)에 그치고 생산된 헴이 세포 내에 축적되기 때문에 헴 추출 등의 문제를 해결하지 못했다. 따라서 고농도로 헴을 생산하면서도 세포 바깥으로 헴을 분비해 정제를 용이하게 하는 친환경 생산 시스템 개발이 필요했다.
연구팀은 바이오매스를 이용한 고효율 헴 생산 미생물을 제작하기 위해 대장균 고유의 헴 생합성 회로를 구성했다. 또한 기존에 사용되지 않았던 C5 대사회로를 사용해 헴 생산의 전구체인 5-아미노레불린산을 생합성했다.
이를 통해 원가가 비싸고 세포 독성을 일으키는 물질인 글리신을 사용하지 않고도 헴 생산량을 대폭 높였다. 이 과정에서 연구팀은 헴 생산량이 향상됨에 따라 생산된 헴이 상당 비율로 세포 바깥으로 분비되는 것을 발견했다.
연구팀은 구성한 대장균의 헴 분비량을 더욱 높이기 위해 사이토크롬 생합성에 관여한다고 알려진 단백질인 헴 엑스포터를 과발현함으로써 헴 생산량과 세포외 분비량 모두가 향상된 헴 분비생산 균주를 개발했다. 이를 통해 헴 엑스포터와 헴의 세포외 분비 사이의 연관성을 밝혔다.
이번 연구를 통해 개발된 기술을 활용하면 환경, 위생, 윤리적 문제없이 재생 가능한 자원을 통해 헴 생산을 할 수 있다. 향후 의료 및 식품 산업 등 헴을 이용하는 다양한 분야에 중요한 역할을 할 것으로 예상된다.
이 특훈교수는 “건강 보조제, 의약품, 식품 첨가물 등 다양한 활용이 가능한 헴을 미생물발효를 통해 고효율로 생산했다”며 “생산된 헴의 3분의 2 가량을 세포 바깥으로 분비하는 시스템을 개발함으로써 산업적 활용을 위한 헴의 생산 및 정제를 용이하게 했다는 의의를 갖는다”고 말했다.
이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 지원을 받아 수행됐다.
□ 그림 설명
그림1. 대장균을 이용한 헴 생산 및 세포외 분비 전체 개념도
2018.09.06
조회수 14861
-
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다.
기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다.
연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다.
특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다.
연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다.
이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다.
최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다.
이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다.
□ 그림 설명
그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도
그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼
그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 18902