- 재료분야 저명 학술지 ‘어드밴스드 머티리얼스’ 25주년 특집호 발표 -
우리 학교 신소재공학과 김상욱 교수가 ‘화학적 도핑을 통한 탄소 신소재 개발’을 주제로 재료분야 저명학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 25주년 기념 초청 리뷰논문(10월 14일자)을 게재했다.
이번 논문에서 김 교수는 그래핀과 탄소나노튜브에 다양한 이종원소 도핑을 통해 새로운 탄소 소재를 개발하고, 적용 가능한 수준까지 재료의 특성을 끌어올려 배터리, 광촉매 등은 물론 미래 기술로 각광받고 있는 태양전지, 휘어지는 디스플레이 등에도 응용될 것이라고 전망했다.
‘도핑’은 운동경기에서 좋은 성과를 내기 위해 선수들이 약물이나 주사 등을 사용하는 것으로 널리 알려져 있다. 그러나 과학계에서는 순수한 물질에 필요한 불순물을 첨가시키는 것을 ‘도핑’이라고 부른다.
두 가지 도핑 모두 성능을 향상시키는 데 도움이 된다는 공통점을 가지고 있지만 과학계의 도핑은 부작용이 없으며 요구되는 성능을 획득하는데 반드시 필요한 존재라는 특징을 갖고 있다. 실리콘 반도체의 경우에도 다양한 원소가 도핑된 반도체를 사용해 요구 성능을 확보하고 있다.
최근 주목받는 그래핀이나 탄소나노튜브와 같은 신소재는 재료 특성이 매우 우수한 것으로 알려져 있지만 산업적으로 활용하기 위해서는 다양한 원소를 도핑이란 첨가 방법을 통해 재료 특성을 우수하게 끌어올리는 방법이 필요했다.
도핑을 할 경우 탄소원자로만 구성된 그래핀과 탄소나노튜브에 다른 원소의 주입이 가능하게 되고 이들 원소의 특징에 따라서 전자를 주거나 받게 되어 전기를 보다 잘 통하게 할 수 있다. 또 반응성을 향상시켜 산업적 응용을 방해하던 낮은 용매 분산성을 향상시킬 수 있게 된다.
이와 함께 향상된 용매 분산성과 전기 전도도는 그동안 탄소 계열 신소재에서는 불가능하게 여겨졌던 용액 공정을 가능하게 할 수 있다. 이를 통해 휘어지는 반도체, 오래가는 배터리, 효율 높은 광촉매 등의 개발을 가능하게 한다.
김상욱 교수는 “이번 기술 개발로 현재 사용되는 배터리보다 더 오래가는 배터리, 더 빛을 잘 차단해주는 자외선 차단제, 태양열로 가는 자동차 및 휘어지는 휴대폰 등에 활용할 수 있는 신소재의 개발이 한층 더 앞당겨진 것으로 기대된다”고 말했다.
어드밴스드 머티리얼스는 재료분야 최고 수준의 학술지로 이번 25주년 기념 특집에서는 세계적으로 저명한 재료 과학자들로 구성된 학술지 편집진이 엄격한 심사과정을 거쳐 선정한 가장 선도적인 업구업적을 내고 있는 연구자들을 초청해 연구 성과를 소개했다.
그림1. 도핑을 통해 만들어진 탄소 신소재와 이들의 다양한 적용사례
- 1. 태양전지, 2. 휘어지는 기판, 3. 액정, 4. 선택적 흡착제, 5. 에너지 저장 및 변환소자, 6. 복합재료(왼쪽 위부터 시계방향)
우리대학 전기및전자공학부 최경철 교수와 전용민 연구원이 서울대 분당병원 박경찬 교수/최혜령 연구원과 OLED로 웨어러블 광 치료 패치를 개발하는데 성공했다. 광 치료는 빛을 쬐어 인체의 생화학 반응을 촉진시키는 치료법으로, 병원 등에 설치된 LED 또는 레이저 기기를 통해 상처를 치유하는 데 널리 사용되고 있다. 기존 기기는 유연하지 못하고 균일하게 빛을 조사하기 어려우며 열이 발생하는 문제가 있어서, 치료효과를 높이고 싶어도 인체에 밀착할 수 없는 한계가 있었다. 최경철 교수 연구팀이 개발한 광 치료 패치는 가볍고 유연해 피부에 부착한 채 일상생활을 하면서 고효율 치료를 지속할 수 있다. 구성요소인 OLED, 배터리, 과열방지 장치(히트싱크), 패치가 모두 얇은 막의 형태로 디자인됐고, 두께가 1㎜ 미만, 무게가 1g 미만이다. 300시간 이상 장시간 작동되며, 반경 20㎜ 이내로 휘어진 상태에서도 구동될 수 있으므로 다양한 인체 부위에 부착할 수 있다. 42℃ 이
2018-03-19우리 대학 물리학과 양찬호 교수 연구팀이 전기장을 통해 자석이 아닌 물질이 자성을 갖게 하거나 그 반대로 자석 내의 자성을 없앨 수 있는 기술을 개발했다. 이 연구를 통해 자성 물질 기반의 저장 매체를 개발한다면 대용량의 정보를 빠른 속도로 이용할 수 있을 것으로 기대된다. 장병권 박사과정이 1저자로 참여한 이번 연구 성과는 물리학 분야 학술지 ‘네이처 피직스(Nature Physics)’ 10월 3일자 온라인 판에 게재됐다. 물질의 내부에는 아주 작은 자석들이 존재한다. 그 작은 자석들이 무질서하게 여러 방향으로 향하고 있으면 비 자성 상태이고, 일정한 방향으로 정렬이 이뤄지면 우리가 흔히 볼 수 있는 자석이 된다. 테라바이트 이상의 외장하드를 쉽게 구할 수 있을 정도로 저장 매체의 용량 기술은 발전했다. 그러나 용량 증가는 필연적으로 저장 매체의 읽고 쓰는 속도를 느리게 만든다. 현재 가장 널리 쓰이는 하드 디스크(HDD)의 느린 데이터 접근 속
2016-10-27〈 김 희 탁 교수 〉 〈 박 정 기 교수 〉 우리 대학 생명화학공학과 김희탁(44) 교수와 박정기 (65) 교수 공동 연구팀이 차세대 리튬공기전지의 수명연장 기술을 개발했다. 이 기술은 리튬공기전지 리튬금속을 보호막을 씌워 발생 가능한 문제점을 차단하는 방식으로 전지기술의 한계를 극복할 수 있을 것으로 기대된다. 이 성과는 재료과학 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 2월 3일자에 게재됐고, 우수성을 인정받아 표지논문으로 선정됐다. 리튬공기전지는 공기 중의 산소와 리튬금속으로 구동되는 이차전지로 기존 리튬이차전지보다 5배에서 10배 높은 에너지 밀도를 구현할 수 있다. 따라서 전기 자동차 등의 차세대 대용량 전지로 각광받고 있지만 양극에서의 낮은 가역성 및 에너지 효율, 급속한 수명 저하가 한계로 지적됐다. 이런 단점을 극복하기 위해
2016-03-09김 상 욱 교수 우리 대학 신소재공학과 김상욱 교수가 23일 대한금속 재료학회 임시총회에서 열린 2015년도 포스코 학술상 수상자로 선정됐다. 포스코 학술상은 학회 금속 및 재료관련 학문 연구자에게 주어지는 학술상으로, 다년간 우수 논문 발표나 저서의 집필로 금속 및 재료공학 발전에 기여한 회원에게 수여된다. 김상욱 교수는 이종원소도핑을 통해 탄소소재의 물성(일함수, 전기전도도, 표면에너지, 화학반응성)을 다양하게 조절할 수 있는 원천기술을 개발했다. 태양전지, 플렉서블 소자, 복합소재개발, 에너지 소자 등 폭 넓은 분야에서 탄소소재가 유용하게 쓰일 수 있음을 증명했고, 이를 통한 탄소신소재의 실용성 있는 기술 개발에 기여했다. 이러한 연구업적을 인정받아 작년에는 신소재분야 학술지인 어드밴스 메터리얼스(Advanced Materials)지에서 창간 25주년 기념 특집 초청리뷰논문을 발표했다. 이 특집논문에는 노벨상 수상자인 앨런 히거 교수 등을 비롯한 신소재분야의 세계
2015-04-23아주 작은 움직임으로도 전기를 생산하는 나노발전기가 개발됐다. 몸에 붙이고 다니면 충전되는 웨어러블 전자기기 전력원 등 다양한 활용이 기대된다. 우리 학교 신소재공학과 이건재 교수팀은 레이저 박리 전사기술과 유연한 압전박막 소재를 활용해 기존보다 약 40배 높은 효율을 갖는 나노발전기 개발에 성공했다. 연구결과는 세계적 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 4월 23일자 표지논문으로 게재됐다. 나노발전기는 유연한 나노소재에 미세한 압력이나 구부러짐이 가해질 때 전기 에너지가 생성되는 기술이다. 전선과 배터리 없이도 에너지공급이 가능하기 때문에 휘어지는 전자제품은 물론 심장 박동기와 같이 몸속에 집어넣는 기기나 로봇의 에너지원으로도 활용 가능하다. 그러나 지금까지는 에너지 효율이 낮고 제작공정이 복잡해 상용화가 어려웠다. 이 교수 연구팀은 고온에서 결정화된 고효율 압전박막물질을 현재 상용화된 레이저 박리기술을 이용해 딱딱한
2014-05-15