- 사람 몸속에서의 효능을 실시간 모니터링 할 수 있어 -
- 나노-바이오-영상-분자화학 등이 융합 -
KAIST가 신약 효능을 분석하는 새로운 기법의 기술을 개발했다.
우리 학교 생명과학과 이상규 박사가 생체나노입자를 사람세포에 적용해 살아있는 세포에서 신약의 효능을 실시간으로 모니터링 하는 기술을 개발했다.
이 기술을 이용하면 사람 몸속에서도 신약의 효능을 보다 정확하게 파악할 수 있을 것으로 기대된다.
지금까지는 신약 후보물질을 몸속으로 투여하고 세포를 추출한 후 효과를 분석했다. 그러나 세포를 용해한 후 세포의 기능이 정지된 상태에서 분석함으로써 예상치 못했던 부작용으로 대부분의 후보물질이 탈락하게 된다. 이 때문에 엄청난 비용과 노력을 들이더라도 신약개발을 성공하기가 매우 어려웠다.
연구팀은 수많은 나노입자가 서로 연결되면 커다란 복합체를 형성할 수 있다는 아이디어에 착안했다. 나노입자를 세포 내부에 적용해 본 결과 실제로 살아있는 세포 안에서 나노입자 간의 결합을 통해 복합체가 빠르게 형성되는 것을 확인했다.
형성된 복합체는 나노센서 역할을 하게 돼 약물이 세포 내에 투여되는 과정에서 약물 타겟과의 결합을 실시간으로 관찰할 수 있었다.
연구팀은 이 나노센서 기술을 ‘스마트한 눈(InCell SMART-i)’이라고 명명했다. 살아있는 세포 안에서 일어나는 신약의 효능작용을 한 눈에 볼 수 있기 때문이다.
이상규 박사는 “이 기술은 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술로 신약개발에 효과적으로 적용 가능한 매우 중요한 기술”이라며 “신약물질의 직접 개발을 원하는 기업으로 기술이 이전돼 상용화가 멀지 않았다”고 말했다.
한편, KAIST 생명과학과 이상규 박사와 리온즈신약연구소(주) 김태국 박사가 개발한 이 기술은 최근 세계적인 화학지인 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 지 9월호에 주목받는 논문(Hot Paper)으로 선정됐다.
그림1. 사람 세포 내에 도입된 스마트 나노 센서가 약물과 약물 타겟 간의 결합에 따라 세포 내에 스팟(같은 나노클러스터)을 형성하고 이를 실시간으로 탐지해 낼 수 있는 원천기술의 모식도
그림2. 약물타겟 A 또는 B가 발현되어 있는 사람세포에 약물을 처리하면 세포 내에서 약물과 약물타겟이 서서히 결합되면서 스마트 나노센서에 의해 이러한 스팟 (같은 나노클러스터) 형태로 실시간으로 센싱-감지된다. 따라서 살아 있는 사람세포 안에서 신약의 효능작용을 실시간으로 마치 비디오를 보는 것처럼 라이브로 모니터링 할 수 있는 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술이다.
머리카락 두께의 수만 분의 1도 관찰할 수 있는 초정밀 현미경으로 특수 전자소자를 측정할 때 발생하던 오차의 원인이 밝혀졌다. 한미 공동 연구진이 그동안 측정 대상 물질의 특성으로 여겨졌던 오차가, 실제로는 현미경 탐침 끝부분과 물질 표면 사이의 극미세 공간 때문이라는 사실을 밝혀낸 것이다. 이번 연구는 반도체, 메모리 소자, 센서 등에 활용되는 나노 소재 특성을 정확하게 분석하여 관련 기술 발전에 크게 기여할 것이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 미국 버클리 대학 레인 마틴(Lane W. Martin) 교수팀과의 국제 공동연구를 통해, 주사탐침현미경 측정의 최대 난제였던 신호 정확도를 저해하는 핵심 요인을 규명하고 이를 제어하는 획기적인 방법을 개발했다고 18일 밝혔다. 연구팀은 현미경 탐침과 시료 표면 사이에 존재하는 비접촉 유전 간극이 측정 오차의 주요 원인임을 밝혀냈다. 이 간극은 측정환경에서 쉽게 변조되거나 오염물질로 채워져 있어 전기적 측정에
2024-11-18탄소나노튜브*는 강철보다 강도가 높아 반도체, 센서, 화학, 군수산업 등 다양한 응용 분야에 활용된다. 하지만 실제 사용시 금속/세라믹 소재가 표면에 코팅되어야 한다. 한국 연구진이 탄소나노튜브의 표면을 균일하게 코팅할 수 있게 보조하는 나노전사인쇄 기반 패터닝 기술 개발에 성공했다. *탄소나노튜브(carbon nanotube; CNT): 다이아몬드의 주성분인 탄소들이 6각형 고리 형태로 연결되어 지름 1나노미터(1m의 10억분의 일)의 긴 대롱 모양을 하고 있는 것 우리 대학 기계공학과 박인규 교수, 김산하 교수가 고려대(총장 김동원) 세종캠퍼스 안준성 교수, 한국기계연구원(원장 류석현) 정준호 박사와 공동연구를 통해 `탄소나노튜브의 원자 침투성(atomic permeability) 향상을 위한 고정밀 나노패터닝 기술'을 개발했다고 8일 밝혔다. 고성능 반도체, 센서, 에너지 소자를 구현하기 위해서는 수직 성장된 탄소나노튜브 표면에 기능성 물질을 코팅하는 것이 필수적
2024-11-08현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다. 우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다. 유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. *단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함 이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테
2024-11-07우리 대학 의과학대학원이 오는 24일(목) 오후 2시에 대전 KAIST 본원에서 2023년 노벨생리의학상 수상자인 드루 와이즈만(Drew Weissmann) 교수 초청 강연을 개최한다. 의과학대학원이 주관하고 대학과 KAI-X의 지원을 받아 마련된 이번 초청 강연은 mRNA 기술을 이용한 백신과 신약 개발 기술에 관심이 있는 우리 대학 학생들에게 자신감과 도전 의식을 심어주고, 대중의 과학 흥미를 고취하고자 추진됐다. 드루 와이즈만 교수는 핵산 변형(nucleotide modification)을 통해 mRNA의 면역 과반응 억제를 유도하고 이를 통한 mRNA 백신 개발에 기여한 공로로 2023년 노벨생리의학상을 카리코 카탈린 교수와 함께 공동 수상했다. 일반적으로 위부에서 세포 내로 주입된 RNA는 선천성 면역반응을 강하게 유도하여 단백질 생산을 억제하고 과도한 염증 반응을 일으킬 수 있다. 드루 와이즈만 교수와 카리코 카탈린 교수 공동연구팀은 이 RNA 구성요소인 핵
2024-10-17코로나19의 전 세계적 유행 이후, 폐 등 호흡기 질병에 대비하기 위한 mRNA 백신 및 치료제는 차세대 치료제로 주목받고 있다. 하지만 기존 mRNA 백신용 전달체가 가지고 있는 한계점을 극복하고 우리 대학 연구진이 호흡기 바이러스 및 난치성 폐질환의 mRNA 흡입 치료를 가능케 하며 유전자 폐 치료 연구의 근간이 될 연구에 성공했다. 우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 유전자 폐 치료에 최적화된 나노 전달체를 개발했다고 7일 밝혔다. 연구팀은 기존 mRNA 전달을 위해 활용되던 지질나노입자(이하 lipid nanoparticle, LNP)의 에어로졸화 과정에서의 불안정성과 폐 미세환경에서의 낮은 전달 효율을 해결하기 위해 이온화성 지질나노복합체(ionizable lipocomplex, iLPX)를 개발했다. iLPX는 이온화성 리포좀의 외부에 mRNA를 결합한 형태로, 에어로졸화 과정에서 입자의 구조를 유지하기 때문에 흡입 전달에 용이하다. 또한, 폐 미
2024-10-10