우리 학교 나노과학기술대학원 윤석현 교수는 세계수준의 연구중심대학 육성사업(WCU)에 참여하는 해외학자로서 미국 하버드의대 맬트 개더(Gather) 박사와 함께 광학 분야 국제학술지인 ‘네이처 포토닉스(Nature Photonics)" 인터넷판 12일 자에 인체 세포에서 형광(螢光)단백질을 이용해 레이저를 만드는 데 성공했다.
네이처 포토닉스는 보도자료와 함께 별도 인터뷰 기사까지 게재했다.
레이저는 빛을 증폭시켜 직선으로 나가게 한 것이다. 50여 년 전 처음 개발되어 레이저 포인터나 바코드 리더처럼 일상생활에도 깊숙이 들어와 있다. 레이저는 대부분 반도체, 기체 등 무기물질을 가공하여 만들어졌다. 그러나 윤 석현 교수는 살아있는 사람 세포에서 레이저를 만드는 데 처음으로 성공하였다.
해파리에는 자외선을 비추면 초록빛을 내는 형광단백질이 있다. 연구진은 사람 세포에 형광단백질 유전자를 넣었다. 이 세포 하나를 용기에 넣고 좌우에 미세 거울을 설치했다. 세포에 빛을 쪼이자 형광단백질에서 푸른 형광이 나왔다. 이 빛은 거울 사이를 왕복하면서 증폭되다가 아주 짧은 순간 레이저가 됐다.
이번 연구는 세포를 관찰하는 현미경에 이용될 수 있다. 레이저는 한 방향으로만 나온다. 형광단백질이 있는 세포에 약한 빛을 쬐고 레이저가 어느 방향으로 나오는지 알면 세포가 어떤 방향으로 있는지 알 수 있다. 또한 형광으로는 세포를 3~4가지 색으로 표현할 수 있지만, 레이저는 1000가지 정도의 색을 나타낼 수 있다.
환자 치료에도 도움을 줄 수 있다. 레이저가 나오는 곳에서만 약효를 발휘하는 약물을 만들면 병든 세포만 골라 치료할 수 있다. 장기에 이식한 초소형 전자기기에서 정보를 보내는 데에도 세포 레이저가 이용될 수 있다고 연구진은 밝혔다.
윤 교수는 KAIST에서 물리학박사 학위를 받고 2005년 하버드 의대에 부임했으며, 현재 KAIST 나노과학기술대학원에 초빙교수로서 한국연구재단 WCU사업의 지원을 받아 이번 연구를 수행했다.
인공지능 차세대 반도체, 자율 실행 실험실 (Self-Driving Lab), 소재 개발 자율 로봇(Robotics for Autonomous Materials Development) 등 최신 연구 동향과 네이처 편집위원들을 만나 토론을 할 수 있는 국제행사가 KAIST에서 열린다. 우리 대학이 2025년 2월 5일부터 7일까지 3일간 대전 KAIST 본원 학술문화관에서 ‘2025 네이처 컨퍼런스’를 개최한다고 4일(월) 밝혔다. 국제학술지 네이처와 공동으로 개최하는 이번 행사에서는 5일 네이처 인텍스(Nature Index)와 정책포럼으로 시작하여 6~7일은 ‘인공지능을 위한 신소재, 신소재를 위한 인공지능(Materials for AI, AI for Materials)’을 주제로 인공지능과 신소재 분야의 최신 연구 동향을 공유한다. 네이처 인덱스는 올해 특집호에서 한국의 과학기술 분야 연구개발(R&D) 성과가 인력과 예산
2024-11-04가파른 인구 증가와 기후 변화로 인한 식량 생산성 저하로 인해 전 세계 식량 위기가 고조되고 있다. 더욱이 오늘날의 식량 생산 및 공급 시스템은 인류가 배출하는 총량의 30%에 달할 정도로 막대한 양의 이산화탄소를 배출하며 기후 변화를 가중시키고 있다. 이러한 난국을 타개할 열쇠로서 지속 가능하면서도 영양이 풍부한 미생물 식품이 주목받고 있다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘지속 가능한 원료로부터의 미생물 식품 생산’연구의 방향을 제시하는 논문을 게재했다고 12일 밝혔다. 미생물 식품은 미생물을 이용해 생산되는 각종 식품과 식품 원료를 가리킨다. 미생물의 바이오매스에는 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 양의 단백질을 함유하고 있으며, 각종 가축이나 어패류, 농작물과 비교해 단위 질량을 생산하는 데 가장 적은 양의 이산화탄소를 배출하고, 필요로 하는 물의 양과 토지 면적 또한 적기
2024-04-12눈에 보이지 않는 작은 분자 세계의 비밀이 밝혀졌다. 우리 대학 화학과 이효철 교수(기초과학연구원(IBS) 첨단 반응동역학 연구단장) 연구팀이 화학적 단결정 분자 내 구조 변화와 원자의 움직임을 실시간으로 관찰하는 데 성공했다. 물질을 이루는 기본 단위인 원자들은 화학결합을 통해 분자를 구성한다. 하지만 원자는 수 펨토초(1/1,000조 초)에 옹스트롬(1/1억 cm) 수준으로 미세하게 움직여 시간과 공간에 따른 변화를 관측하기 어려웠다. 분자에 엑스선을 쏴 회절 신호를 분석하는 엑스선 결정학(X-ray Crystallography)의 등장으로 원자의 배열과 움직임을 관찰하는 도구가 상당한 발전을 이뤘지만, 주로 단백질과 같은 고분자 물질에 대한 연구에 집중됐다. 비(非)단백질의 작은 분자 결정은 엑스선을 흡수하는 단면적이 넓고 생성되는 신호가 약해 분석이 어렵기 때문이다. 연구진은 선행 연구에서 단백질 내 화학반응의 전이상태와 그 반응경로를 3차원 구조로 실시간 규명한 바
2024-03-26우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘벤질아세테이트 생산을 위한 미생물 공정’논문을 발표했다고 26일 밝혔다. 이번 논문은 네이처(Nature) 誌가 발행하는 ‘네이처 화학공학(Nature Chemical Engineering)’의 표지논문으로 선정됐다. ※ 논문명 : A microbial process for the production of benzyl acetate ※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), Luo Zi Wei(한국과학기술원, 제2 저자), 김기배(한국과학기술원, 제3 저자), Xu Hanwen(한국과학기술원, 제4 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 5명 향은 화장품 및 식품 산업에서 중요한 요소다. 그중에서도 자스민 향과 일랑일랑 향은 각종 향수와 화장품, 개인 위생용품뿐만 아니라 식품 및 음료 제조에까지 널리 애용되고
2024-02-26우리 대학이 '현대차그룹-KAIST 온칩 라이다(On-Chip LiDAR) 개발 공동연구실(이하 공동연구실)'을 대전 본원에 개소했다. 공동연구실은 발전하는 자율주행 시장에서 완전자율주행(4~5단계)을 위한 라이다 센서를 개발하기 위한 연구에 주력한다. 실리콘 포토닉스(광반도체)를 활용해 센서의 크기는 줄이는 동시에 성능은 높일 수 있는 온칩 센서 제작 기술과 차세대 신호검출 방식을 도입할 수 있는 핵심기술 개발이 목표다. 공동연구실은 김상현, 김상식, 정완영, 함자 쿠르트(Hamza Kurt) 교수 등 우리 대학 전기및전자공학부 연구팀과 현대차그룹 선행기술원 연구팀 등 약 30여 명 규모로 구성돼 2028년까지 4년간 운영된다. 우리 대학은 ▴실리콘 포토닉스 기반 소형 온칩 라이다용 소자개발 ▴라이다 구동을 위한 고속, 고출력 구동 집적회로(IC) 제작, ▴라이다 시스템 최적화 설계 및 검증 등 연구팀별로 특화된 전문 분야에서 세부 연구를 주도한다. 특히, 실리콘 포토
2024-02-21