- 머리카락 단면적의 70만배 보다 작은 나노유체기술과 나노광학기술을 융합한 바이오분석기술.
- 신약개발 및 신경질환 조기진단기술로 활용 기대.
우리학교 바이오및뇌공학과 정기훈 교수 연구팀이 소분자 생화합물 (small molecules) 검출을 위한 획기적인 고감도 나노광학측정기술을 개발했다.
소분자 생화합물은 분자량이 작은 생체내 분자들로 다양한 세포의 세포막을 드나들며 세포간의 신호전달 등에 큰 역할을 담당한다. 최근에는 제약업계에서도 소분자 생화합물을 이용한 신약 개발 관련 연구 및 개발에 큰 관심을 기울이고 있다.
그러나 이러한 소분자 생화합물은 대부분 특정 항원-항체 화학 결합반응을 유도하기 힘들어 기존에 많이 사용되는 형광이나 전기화학적인 방법으로 극소량을 분석하는데 어려움이 많았다.
정 교수 연구팀은 사람의 머리카락 단면적의 70만배 보다 작은 나노유체관내 유동특성을 이용해 나노몰(nM) 수준의 농도를 갖는 극미량의 소분자 생화합물의 농도를 국소적으로 증가시켰다. 이후 나노플라즈모닉 광학기술과 접목해 측정하는 빛의 세기를 1만배 이상 향상시켜, 별도의 생화학처리를 사용하지 않은 도파민(Dopamine)과 가바(GABA)와 같은 신경전달물질을 1초 이내에 구별하는 데 성공했다.
이 결과는 현존 세계 최고수준의 검출한계를 수백배 이상 향상시킨 기술로 평가받고 있다.
이번 연구결과는 앞으로 소분자 생화합물을 이용한 다양한 글로벌 신약개발은 물론, 알츠하이머병과 같은 퇴행성 신경질환의 조기진단 및 뇌기능 진단기술에 크게 기여할 수 있을 것이라 기대된다.
한편, 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업과 한국생명공학연구원이 지원하는 오픈이노베이션사업의 일환으로 수행된 이번 연구는 오영재 박사과정 학생 주도하에 진행됐으며, 독일에서 발간되는 나노분야 국제저명학술지인 ‘스몰(Small)’지의 1월 17일자 표지논문으로 게재됐다.
우리 연구진이 기존까지 전무했던 녹색빛을 가스 센서에 조사하여 상온에서 최고 수준의 이산화질소 감지 성능을 보이는 것을 확인했다. 이를 통해 녹색광이 50% 이상 포함된 실내조명을 통해서도 작동이 가능한 초고감도 상온 가스 센서를 개발했다. 우리 대학 신소재공학과 김일두 교수 연구팀이 가시광을 활용해 상온에서도 초고감도로 이산화질소(NO2)를 감지할 수 있는 가스 센서를 개발했다고 10일 밝혔다. 금속산화물 반도체 기반 저항 변화식 가스 센서는 가스 반응을 위해 300 oC 이상 가열이 필요해 상온 측정에 한계가 있었다. 이를 극복하기 위한 대안으로 최근 금속산화물 기반 광활성 방식 가스 센서가 크게 주목받고 있으나, 기존 연구는 인체에 유해한 자외선 내지는 근자외선 영역의 빛을 활용하는 데에 그쳤다. 김일두 교수 연구팀은 이를 녹색 빛을 포함한 가시광 영역으로 확대해 범용성을 크게 높였으며, 녹색광을 조사했을 때 이산화질소 감지 반응성이 기존 대비 52배로 증가하였다
2024-06-10우리 대학 기계공학과 윤용진 교수팀이 뉴캐슬 대학(Newcastle University in Singapore) 김누리 교수와 공동연구를 통해 미세 유체의 회전력을 이용해 극소량의 분자 샘플로 현장 진단(Point-of-Care)이 가능한 바이오센서 칩을 개발했다고 18일 밝혔다. 윤용진 교수 연구팀은 미세 유체(microfluidics) 기술과 광 초소형 정밀기계 기술 바이오센서(Optical MEMS BioSensor)를 융합해 특정 용액의 0.19 펨토 몰(fM) 농도까지 감지할 수 있는 것으로 기존의 단일 유동 방법보다 1억(108)배 이상 향상된 감지력을 보여주는 `다상 유동 바이오센서(Rotationally Focused Flow (RFF) Biosensor)'의 연구 개발에 성공했다. 이와 관련해 윤용진 교수는 "이번 연구를 통해 T자형 미세 유체 채널 내에 유체의 회전 운동을 발생시키는 현상을 적용함으로서, 현재까지 알려진 분자 진단의 최소 샘플 농도로, 극
2021-10-19〈 김일두 교수 〉 우리 대학 신소재공학과 김일두 교수가 나노과학분야 권위 학술지인 ‘에이씨에스 나노(ACS Nano)’ 지 부편집장으로 선임됐다. 김 교수는 부편집장 임무를 통해 투고 논문의 심사 여부를 판단하고 심사하기로 결정된 논문의 심사자(reviewer) 선정 및 게재 승인 여부를 결정하게 된다. KI 첨단나노센서 연구센터장을 맡고 있는 김 교수는 2018년 43편 (평균 Impact Factor: 8.8)의 SCI 논문 발표를 포함해 지금까지 242편 이상의 논문을 전문 학술지에 발표했고, 200여 편에 달하는 특허 출원 등 탁월한 연구 성과를 낸 업적을 인정받았다. 김 교수는 2018년도 송곡과학기술상을 수상을 비롯해 2018 국가연구개발 우수성과 100선에서 ‘자기조립 유기체 복합촉매 커플링 기반 초고감도 가스센서 플랫폼소재 개발’로 과학기술정보통신부 최우수 과제로 선정된 바 있다. 김 교수는 현재
2018-11-21우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 종이에 금속 나노입자를 증착한 저렴하고 정교한 통풍 종이 검사지(Strip)를 개발했다. 이 기술은 눈물 속의 생체 분자를 분석해 비침습적 진단이 가능하고 소요 시간을 크게 단축시킬 수 있다. 진단 의학, 약물 검사 뿐 아니라 현장 진단 등 특정 성분의 신속하고 정확한 진단이 필요한 다양한 분야에 응용 가능할 것으로 기대된다. 박문성 박사과정이 1저자로 참여한 이번 연구는 나노분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 2016년 12월 14일 온라인 판에 게재됐다. 통풍은 바늘 모양의 요산 결정이 관절에 쌓이면서 통증을 유발하는 병이다. 일반적으로 통증의 완화와 요산 배출, 요산 강하제 복용 등이 치료법으로 이용된다. 이러한 치료법은 일시적인 통풍 증상 완화에는 도움이 되지만 완치에는 한계가 있어 지속적인 요산 농도 측정과 식이요법이 병행돼야 한다. 따라서 간편하게 요산을 측정할 수 있다면
2017-01-17KAIST 바이오시스템학과 박제균(朴濟均, 42) 교수팀이 나노자성입자를 이용 단백질, DNA 등의 생체분자(生體分子)를 초고감도로 검출할 수 있는 바이오센서 기술 개발에 성공했다. 이 기술은 나노(10억분의 일)그램 이하 수준으로 존재하는 극미량 물질을 검출할 수 있는 새로운 센서기술로 특정 자기장(磁氣場)하에서 생체분자의 정량적 및 고감도 분석이 가능하다. 황사 알레르기 등 많은 질환의 표지가 되는 생체분자들은 일반적으로 극미량 만으로도 인체에 심각한 영향을 미치기 때문에 이를 검출할 수 있는 센서기술은 차세대 나노바이오기술의 핵심분야에 속한다. 기존의 바이오센서 기술은 극미량 검출에는 본질적인 한계가 있는데 이번에 개발된 나노입자를 이용한 극미량 검출기술은 그러한 한계를 뛰어넘은 새로운 원천기술로서 향후 바이오센서, 랩온어칩(Lab on a chip, 손톱만한 크기의 칩으로 실험실에서 할 수 있는 연구를 수행할 수 있도록 만든 장치)개발 등에 크게 기여할
2005-05-20