본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9E%90%EC%97%B0%EA%B3%BC%ED%95%99%EB%8C%80%ED%95%99
최신순
조회순
김필한 교수, 패혈증 환자의 폐 손상 원인 밝혀
〈 김필한 교수 〉 우리 대학 의과학대학원/나노과학기술대학원 김필한 교수 연구팀이 3차원 생체현미경 기술을 통해 패혈증 폐에서 모세혈관과 혈액 내 순환 세포를 고해상도 촬영하는 데 성공했다. 연구팀은 패혈증 폐의 모세혈관 내부에서 백혈구의 일종인 호중구(好中球, neutrophil)들이 서로 응집하며 혈액 미세순환의 저해를 유발하고, 나아가 피가 통하지 않는 사강(死腔, dead space)을 형성함을 규명했다. 연구팀은 이 현상이 패혈증 모델의 폐손상으로 이어지는 조직 저산소증 유발의 원인이 되며, 호중구 응집을 해소하면 미세순환이 개선되며 저산소증도 함께 호전됨을 증명했다. 박인원 박사(현 분당서울대학교병원 응급의학과)가 주도한 이번 연구결과는 의학 분야 국제 학술지 ‘유럽호흡기학회지(European Respiratory Journal)’에 3월 28일 자에 게재됐다. 폐는 호흡을 통해 생명 유지의 필수 작용인 산소와 이산화탄소 간 가스 교환을 하는 기관으로 이는 적혈구들이 순환하는 수많은 모세혈관으로 둘러싸인 폐포(肺胞)에서 이뤄진다. 폐포의 미세순환 관찰을 위해 연구자들이 지속적인 노력을 하고 있으나 호흡을 위해 항상 움직이는 폐 안의 모세혈관과 적혈구의 미세순환을 고해상도로 촬영하는 것은 매우 어려웠다. 연구팀은 자체 개발한 초고속 레이저 스캐닝 공초점 현미경과 폐의 호흡 상태를 보존하면서 움직임을 최소화할 수 있는 영상 챔버를 새롭게 제작했다. 이를 통해 패혈증 동물모델의 폐에서 모세혈관 내부의 적혈구 순환 촬영에 성공했다. 이 과정에서 패혈증 모델의 폐에서 적혈구들이 순환하지 않는 공간인 사강이 증가하며 이곳에서 저산소증이 유발되는 것을 발견했다. 이는 혈액 내부의 호중구들이 모세혈관과 세동맥 내부에서 서로 응집하며 갇히는 현상으로 인해 발생함을 밝혔다. 갇힌 호중구들은 미세순환 저해, 활성산소의 다량 생산 등 패혈증 모델의 폐 조직 손상을 유발하는 것도 확인했다. 연구팀은 추가 연구를 통해 폐혈관 내부의 응집한 호중구가 전신을 순환하는 호중구에 비해 세포 간 부착에 관여하는 Mac-1 수용체(CD11b/CD18)가 높게 발현함을 증명했다. 이어 Mac-1 저해제를 패혈증 모델에 사용하여 호중구 응집으로 저해된 미세순환을 개선하고 저산소증의 호전과 폐부종 감소를 증명했다. 연구팀이 독자 개발한 최첨단 고해상도 3차원 생체현미경 기술은 살아있는 폐 안 세포들의 실시간 영상촬영이 가능해 패혈증을 포함한 여러 폐 질환의 연구에 다양하게 활용될 것으로 기대된다. 연구팀의 폐 미세순환 영상촬영 및 정밀 분석 기법은 향후 미세순환과 연관된 다양한 질환들의 연구뿐 아니라 새로운 진단기술 개발 및 치료제의 평가를 위한 원천기술로 활용될 것으로 보인다. 김 교수 연구팀의 3차원 생체현미경 기술은 KAIST 교원창업기업인 아이빔테크놀로지(IVIM Technology, Inc)를 통해 상용화돼 올인원 생체현미경 모델 ‘IVM-CM’과 ‘IVM-C’로 출시됐으며 여러 인간 질환의 복잡한 발생 과정을 밝히기 위한 기초 의․생명 연구의 차세대 첨단 영상장비로서 미래 글로벌 바이오헬스 시장에 핵심 장비로 활용될 예정이다. 김 교수는 “패혈증으로 인한 급성 폐손상 모델에서 폐 미세순환의 저해가 호중구로 인하여 발생하며, 이를 제어하면 미세순환 개선을 통해 저산소증 및 폐부종을 해소할 수 있어 패혈증 환자를 치료하는 새로운 전략이 될 수 있음을 새롭게 밝혀냈다.”고 말했다. 이번 연구는 의과학대학원 졸업생 박인원 박사가 1저자로 참여했고 유한재단 보건장학회, 교육부 글로벌박사펠로우쉽사업, 과학기술정보통신부의 글로벌프론티어사업과 이공분야기초연구사업, 그리고 보건복지부의 질환극복기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 초고속 레이저주사 3차원 생체현미경 시스템 그림2. 생체 내 폐 이미징 기술 개념도 및 사진
2019.04.01
조회수 16927
박용근 교수, 안경 없이 3차원 홀로그래픽 디스플레이 재생기술 개발
〈 박용근 교수 〉 우리 대학 물리학과 박용근 교수 연구팀이 안경 없이도 3차원 홀로그래픽 디스플레이를 재생할 수 있는 기술을 개발했다. 특히, 연구팀의 기술은 초박형 구조로 기존 디스플레이 생산 공정과 호환 가능하며, 대면적 광시야각을 확보해 3차원 디스플레이 기술을 한 단계 진보시켰다. 박종찬 박사(前 KAIST 물리학과 연구원, 現 미국 일리노이 대학교 연구원)가 1저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 21일 자 온라인판에 게재됐다. 특별한 안경 없이 실감 나는 3차원 영상을 재생할 수 있는 홀로그래픽 디스플레이는 오랫동안 꿈의 기술로 여겨져 왔다. 그러나 현재 기술로는 구현할 수 있는 3차원 영상은 크기가 매우 작고 시야각 또한 크게 제한돼 현실적으로 구현이 어렵다. 3차원 홀로그램을 만들기 위해서는 빛의 세기와 빛이 진행하는 방향 모두 정밀하게 변조해야 한다. 빛 진행 방향의 정밀한 변조는 공간광파면 조절기에 의해 이뤄진다. 이때 빛이 진행하는 방향을 넓은 각도에서 정밀하게 제어하기 위해서는 공간광파면 조절기가 많은 픽셀로 이뤄져야 한다. 하지만 현재의 공간광파면 조절기의 픽셀 개수는 실감 나는 3차원 영상을 만들기에 턱없이 부족하다. 즉 빛을 매우 한정된 각도 내에서만 변조할 수 있는 것이다. 이런 조건에서 현재의 기술로 만들 수 있는 3차원 영상은 크기는 약 1센티미터(cm), 시청 가능한 시야각은 약 3도 이내로 제한돼 사실상 실용화가 불가능하다. 오랫동안 과학자들은 실용적인 홀로그램을 만들기 위해 여러 개의 공간광파면 조절기를 합쳐서 이용하거나, 사람이 인식할 수 있는 속도보다 훨씬 빠른 속도로 다량의 홀로그램 이미지들을 조합해 3차원 이미지를 만들었다. 하지만 이러한 방식은 복잡한 시스템을 뒷받침할 수 있는 연구실 환경에서만 구현됐다. 연구팀은 복잡한 광학계를 구성하는 대신 LCD패널과 비주기적으로 설계된 박막을 추가함으로써 기존 방식에 비해 성능이 크게 향상된 3차원 영상을 개발했다. 박막은 비주기적으로 배열된 수많은 구멍(핀홀)으로 구성되는데 핀홀은 빛을 넓은 각도로 퍼뜨리기 때문에 형성된 3차원 영상을 넓은 각도에서 볼 수 있다. 연구팀은 이론에 따라 설계된 박막을 기존 디스플레이의 LCD패널에 부착했고, 실험을 통해 약 3cm×3cm의 화면에서 약 30도의 시야각을 가지는 3차원 홀로그램 영상을 구현하는 데 성공했다. 이는 기존의 Full HD 홀로그래픽 디스플레이로 표현할 수 있는 공간대역폭 보다 약 400배 이상 향상된 결과이다. 또한 3가지 색(적색, 녹색, 청색)을 나타내며 60Hz로 작동하는 동적 홀로그램 역시 구현했다. 박용근 교수 연구팀이 지난 2016년 Nature Photonics지에 보고했던 기술은 산란을 이용해 홀로그래픽 디스플레이 품질을 향상시켰지만, 복잡한 계산과 큰 부피의 장비가 필요했었다. 이후 지속적인 기술 개발을 통해 본 연구에서는 일반 LCD 패널에 비주기적인 박막만 추가하면 제작할 수 있기 때문에, 기존 제조공정에 한 단계를 추가함으로써 상용화에 적합한 기술로 기대된다. 1 저자인 박종찬 박사는 “홀로그래픽 디스플레이의 상용화를 위해서는 넓은 시야각과 큰 영상 크기뿐 아니라 소형 폼팩터를 유지해야 한다. 이번 연구에서는 평면형 디스플레이에서 대면적 광시야각 홀로그래픽 디스플레이를 구현했다”라며 “스마트폰이나 태블릿 등 휴대용 기기에서 홀로그래픽 디스플레이를 구현하는 기반기술이 될 것으로 기대한다”라고 말했다. □ 그림 설명 그림1. 실제 구현된 3차원 홀로그래픽 디스플레이와 전자현미경 이미지 그림2. 60 Hz로 동작하는 3차원 동적 컬러 홀로그램
2019.03.25
조회수 11365
조용훈, 최형순 교수, 반도체 내 양자 소용돌이 제어 기술 개발
우리 대학 물리학과 조용훈, 최형순 교수 공동 연구팀이 반도체 공진기 구조에서 ‘엑시톤-폴라리톤 응축’이라는 양자물질 상태를 형성 후 새 광학적인 방식으로 양자 소용돌이를 생성하고 제어하는 데 성공했다. 권민식 연구원과 오병용 박사가 공동 1저자로 참여한 이번 연구 결과는 미국 물리학회가 발행하는 물리학 권위지인‘피지컬 리뷰 레터스 (Physical Review Letters)’ 2월호에 게재됐다. 태풍이 일거나 싱크대에서 물이 빠질 때 유체가 소용돌이를 일으키며 회전하는 것은 우리에게 익숙한 현상이다. 이와 마찬가지로 초유체, 초전도체 같은 양자 유체도 소용돌이를 일으키며 회전할 수 있는데, 이는 파동 함수의 위상(phase)이 소용돌이를 중심으로 원주율의 특정 배수가 되는 조건에서만 가능하다. 이렇게 소용돌이가 불연속적으로 양자화되는 현상을 양자 소용돌이라고 한다. 양자 소용돌이는 양자 유체역학을 연구하는 데 가장 핵심적인 요소 중 하나이다. 초유체의 에너지 손실 없이 회전할 수 있는 특성과 소용돌이의 회전 방향을 쉽게 뒤집을 수 없는 위상학(topology)적 안정성이 결합돼 있어 양자 소용돌이를 쉽게 생성하고 제어할 수 있다면 미래형 정보 소자로도 활용할 수 있다. 이런 면에서 반도체 내부에 존재하는 양자 유체인 엑시톤-플라리톤(이하 폴라리톤)은 특히 유리하다. 반도체에 밴드갭(전도체의 가장 아랫부분의 에너지 준위와 가전자대의 가장 윗부분의 에너지 준위 간의 에너지 차이)보다 높은 에너지를 갖는 빛을 쬐면 전자-전공 쌍이 형성되고 서로 강하게 이끌리며 엑시톤을 형성한다. 이러한 반도체에 높은 반사율을 갖는 거울 구조의 공진기를 결합하면 빛(광자)과 물질(엑시톤)이 강하게 상호작용하며 빛, 물질의 성질을 동시에 갖는 제3의 양자 물질을 만들 수 있는데 이를 폴라리톤이라 한다. 폴라리톤이 일정 밀도 이상 모이면 마치 하나의 입자처럼 행동하는 폴라리톤 응축 상태를 띌 수 있는데 이 때 폴라리톤은 초유체의 특성도 갖게 된다. 다른 초유체와 달리 잘 정립된 반도체 공정 기술과 광학적 제어 기술이 결합돼 있고, 초유체 생성 온도가 상대적으로 높아 그 응용 가능성이 기대되는 물질이다. 연구팀은 광-펌핑(원자나 이온이 빛을 흡수해 낮은 에너지의 상태에서 높은 에너지의 상태로 변화하는 현상)을 위해 사용한 레이저의 궤도 각운동량을 제어해 반도체 물질 내에 양자 소용돌이의 방향과 개수를 손쉽게 조절할 방법을 개발했다. 연구팀은 공진 파장이 아닌 빛으로 기존 양자 소용돌이 생성을 위한 까다로운 실험조건을 극복했다. 이 결과는 고체 상태에서 광학적 방법을 이용한 미래형 정보 소자와 복잡한 양자 현상을 이해할 수 있는 양자 시뮬레이터로의 활용 가능성을 높였다는 측면에서 큰 의의가 있다. 비공진 레이저의 궤도 각운동량이 폴라리톤의 기저 상태에까지 영향을 끼친다는 것을 밝힌 이번 연구 결과는 반도체 공진기 시스템에서 전자-정공 쌍의 에너지 완화 과정을 이해하는 데에 있어서도 중요한 결과이다. KIST 송진동 박사 연구팀과의 협력으로 진행된 이번 연구는 한국연구재단의 중견연구자 및 신진연구자 지원사업을 받아 수행됐다. □ 그림 설명 그림1. 엑시톤-폴라리톤 초유체와 양자소용돌이 상태의 생성 그림2. 양자소용돌이 제어
2019.03.11
조회수 13774
장석복 교수, 한 종류의 분자만 선택적으로 합성할 수 있는 새 촉매 개발
〈 박윤수 연구원, 장석복 교수 〉 자연계의 많은 분자들은 자신과 똑 닮은 ‘쌍둥이 분자’를 갖고 있다. 이들은 구성하는 원소의 종류와 개수가 같아도 서로 완전히 다른 성질을 나타낸다. 특히 쌍둥이 분자가 서로를 거울에 비친 모습과 같은 형상을 띈 경우를 ‘거울상 이성질체’라고 한다. 우리 대학 화학과 장석복 교수(IBS 분자활성 촉매반응 연구단장)와 IBS 박윤수 연구원은 두 개의 거울상 이성질체 중 한 종류의 분자만을 선택적으로 합성할 수 있는 새로운 촉매를 개발했다. 또 이 촉매를 이용해 자연에 풍부한 탄화수소화합물을 의약품의 필수재료인 카이랄 락탐으로 제조하는 데도 성공했다. 거울상 이성질체는 왼손과 오른손처럼 서로를 거울에 비춰보면 같은 모양이지만, 아무리 회전시켜도 겹칠 수 없는 이성질체를 말한다. 거울상 이성질성 또는 카이랄성(Chirality)이라고 불리는 이 특성은 의약품 개발에도 매우 중요하다. DNA, 단백질 등 생체물질 역시 카이랄성을 지녀 개발된 약물의 유형에 따라 각각 다른 생리활성을 나타내기 때문이다. 또 한 쪽 유형이 유용할지라도, 다른 유형의 이성질체는 독약이 될 수도 있다. 하지만 유용한 이성질체만을 선택적으로 합성하는 비대칭반응(asymmetric synthesis)은 아직까지 현대 화학의 난제로 꼽히고 있다. 연구진은 새로운 촉매 개발로 이 난제를 해결했다. 연구팀은 2018년 3월 국제학술지 ‘사이언스(Science)’에 자연계에 풍부한 탄화수소를 고부가가치의 감마-락탐 화합물로 전환시키는 이리듐 촉매 개발 성과를 발표한 바 있다. 하지만 당시 개발된 촉매 역시 두 가지 형태의 거울상 이성질체가 선택성 없이 모두 얻어진다는 단점이 있었다. 이번 연구에서 연구진은 수십여 개의 후보 촉매 중 카이랄 다이아민(Chiral Diamine) 골격을 포함한 이리듐 촉매가 99% 이상의 정확도로 거울상을 선택할 수 있음을 발견했다. 개발된 촉매는 필요에 따라 카이랄성 감마-락탐을 골라서 합성할 수 있다. 왼손잡이성 이리듐 촉매를 사용할 경우엔 왼손잡이성 감마-락탐이, 오른잡이성 이리듐 촉매를 사용하면 오른손잡이성 감마-락탐을 제조할 수 있다. 이후 연구진은 계산화학 시뮬레이션 연구를 통해 높은 선택성의 원인을 분석했다. 가령, 왼손잡이성 촉매를 사용한 경우에는 락탐의 합성과정에서 카이랄 다이아민 촉매와 탄화수소화합물 사이에는 일시적인 수소 결합이 발생하고, 이로 인해 왼손잡이성 락탐 형성이 촉진된다는 사실을 확인했다. 연구진은 개발한 촉매를 통해 다양한 구조를 갖는 카이랄 락탐 화합물을 합성하는 데도 성공했다. 이렇게 합성된 카이랄 락탐은 독특한 입체적 특성 때문에 생체 단백질과의 상호작용이 유용하다. 특히 우리 신체를 구성하는 아미노산 유도체나, 천연물도 모두 카이랄성 분자인 만큼, 신체 내 생리활성을 효과적으로 높인 약물 개발이 가능할 것으로 기대된다. 이번 연구를 이끈 장석복 단장은 “약효를 갖는 의약품의 핵심 단위만 선택적으로 제조할 수 있는 기술로 향후 유기합성 및 의약분야 연구로 이어져 부작용을 덜고 효과는 높인 신약개발까지 이어지리라 기대한다”며 “자연계에 풍부한 탄화수소화합물을 재료로 고부가가치 원료를 제조할 수 있다는 경제적 효과도 있다”고 말했다. 연구성과는 화학분야 권위지인 네이처 카탈리시스(Nature Catalysis) 2월 19일자(한국시간) 온라인 판에 실렸다. □ 그림 설명 그림1. 비대칭반응을 통한 카이랄성 감마-락탐 합성 그림2. 연구 성과 개요
2019.02.19
조회수 11696
윤동기 교수, 공기로 대면적의 모자이크만화경 패턴 구현
〈 윤동기 교수 〉 우리 대학 나노과학기술대학원/화학과 윤동기 교수 연구팀이 액정의 결함을 이용해 마이크론 크기의 공기 기둥을 만들고, 이를 이용해 모자이크 만화경(kaleidoscope) 패턴을 구현하는 데 성공했다. 이번 연구는 향후 자연계에서 존재하는 다양한 형태의 반복적 모자이크 구조의 형성에 대한 이해를 도울 수 있는 기초연구가 될 수 있을 것으로 기대된다. 이를 기반으로 액정기반의 나노 재료를 활용해 디스플레이, 광학 및 화학 센서 등의 응용기술에 다양하게 기여할 것으로 기대된다. 김대석 박사가 1저자로 참여하고 슬로베니아 루블라냐 대학(University of Ljubljana)의 우로스 트칼렉(Uros Tkalec) 교수와의 국제 공동 연구로 수행된 이번 연구는 국제 학술지 사이언스의 자매지 ‘사이언스 어드밴시스(Science Advances)’ 11월 23일 자 온라인판에 게재됐다. (논문명: (영문)Mosaics of topological defects in micropatterned liquid crystal textures, (국문)마이크로 패턴이 형성된 액정의 위상 결함 모자이크 패터닝) 액정 재료는 손쉬운 배향 제어, 빠른 반응 속도, 이방적(anisotropic)인 광학 특성으로 인해 액정표시장치(LCD), 광학 센서 등에 활용되는 대표적 유기 소재이다. 이때 액정의 결함을 최소화하는 것이 성능 유지를 위해 유리한 것으로 알려졌지만 물질의 특성상 액정의 결함은 불가피하게 발생한다. 그러나 최근 액정의 결함이 오히려 광학적, 구조적 및 탄성적 기능을 가진 것으로 주목받으면서 액정물질은 더 이상 LCD 광학 소재의 전유물이 아닌 전기광학 및 센서 분야를 포함한 다양한 분야에서 용용 가능성이 매우 큰 것으로 평가받고 있다. 하지만 액정물질은 물풀처럼 흐르는 특성과 마치 도미노처럼 한 부분의 영향으로 전 영역이 변하는 장범위 규칙(long range order)을 갖는 탄성 때문에 결함 구조를 대면적에 규칙적, 일관성 있게 패터닝 하는 것은 매우 어렵다. 연구팀은 문제 해결을 위해 대기 상태의 공기층이 액정물질을 만났을 때 수직 배향을 유도한다는 사실에 주목했다. 이를 효과적으로 이용하기 위해 마이크로 크기 패턴의 기판과 유리기판 사이에 액정을 주입해 공기주머니를 자발적으로 형성함으로써 수십 마이크론 내에서 액정분자들을 사방으로 잡아주는(anchoring) 시스템을 개발했다. 이를 통해 효과적으로 액정의 결함 구조를 대면적에서 제어해 모자이크 문양의 패터닝에 성공했다. 이번 연구의 핵심기술은 액정물질이 공기층 패턴 내에서 온도에 따라 변하는 상전이(phase transition) 속도에 있다. 상전이 속도가 빠르면 빠를수록 액정이 급속으로 성장하며 더욱 균일한 패턴을 형성한다. 반면 느린 상전이 속도에서는 액정물질의 탄성과 공기층의 고정 에너지(anchoring anergy)의 균형이 비대칭적으로 전개되며 불균일한 결함 구조를 만든다. 연구팀은 이런 상전이 속도에 따른 비대칭 및 비가역적 결함 구조 형성은 다양한 비 평형적 자연현상에서도 유사한 패턴으로 관찰된다는 점에 착안해 물리적 경제적으로 거의 불가능한 자연현상에 대한 실험 모델로 이번 연구를 접목할 수 있다고 밝혔다. 예를 들어 반도체 물질의 결정 성장에서 형성되는 결함 구조, 블랙홀을 포함한 특이점(singularity)을 형성하는 중력 점 간의 형성 원리, 응집물리(condensed matter)에서 원자들 간 상호작용 등 넓은 범위의 자연현상에 대해 유사성을 표현할 수 있는 실험적 모델을 정립할 수 있을 것으로 기대된다. 윤 교수 연구팀은 위상결함(topological defect)의 밀도 조절을 통해 복잡하고 다양한 2차원 모자이크 패턴을 형성하는 기술도 선보였다. 위상학적 결함 구조는 마치 전기의 음양 전하처럼 위상학적 전하(topological charge)를 갖는 음양 결함으로 정의할 수 있다. 이때 항상 음과 양이 짝을 이루어 위상학적 중립을 가지려는 규칙을 갖는다. 연구팀은 이러한 액정결함의 물리적 현상을 바탕으로 상기 공기층과 기판의 화학처리를 결합해 규칙적인 배열을 유지하는 동시에 위상결함의 밀도를 조절해 기술을 완성했다. 이러한 면적분할(tiling) 기반의 모자이크 패턴은 다양한 산업 및 실용 디자인에 적용할 수 있는 예술적 가치를 가지고 있을 뿐 아니라 세포막의 이중구조, 유기탄화시료 및 다양한 무기 결정구조면 등에 활용 가능할 것으로 보인다. 윤 교수는 “우리나라가 액정 디스플레이 산업의 강국이지만 액정 기초연구는 세계적 수준에 비해 높지 않다”라며 “이번 연구를 계기로 국내 관련 기초연구 관심도가 높아지는 계기가 되길 바란다”라고 말했다. 이번 연구는 미래창조과학부와 더불어 한국연구재단이 추진하는 미래유망융합기술파이오니어 사업과 전략연구과제의 일환으로 수행됐다. □ 그림 설명 그림1. 공기 층의 사각 및 다이아몬드 패턴에서 형성 된 네마틱 액정의 편광현미경 사진 그림2. 액정패턴이 형성되는 편광현미경 이미지들
2018.11.26
조회수 10211
한순규 교수, 마약중독치료제 및 항암제 후보물질 합성 기술 개발
〈 왼쪽부터 임형근 연구원, 한순규 교수, 성시광 연구원 〉 우리 대학 화학과 한순규 교수 연구팀이 마약중독 치료제, 항암제 후보물질로 쓰일 수 있는 천연물을 인공적으로 합성하는 데 성공했다. 연구팀은 시중에서 구할 수 있는 카타란틴(catharanthine)을 원료로 해 산화와 재배열을 통해 7종의 이보가 및 포스트이보가 천연물을 합성해냈다. 이번 연구결과는 마약중독 치료제, 항암제 후보물질 생산의 원천기술이 될 것으로 기대된다. 성시광, 임형근 석박사통합과정이 공동 1 저자로 참여한 연구는 화학 분야 국제 학술지이자 셀(Cell) 자매지인 ‘켐(Chem)’ 11월 15일 자에 게재됐다. (논문명 : Biosynthetically Inspired Transformation of Iboga to Monomeric Post-Iboga Alkaloids, 생합성 가설에 기반한 이보가 알칼로이드의 단위체 포스트이보가 알칼로이드로의 변환) 이보가 알칼로이드가 학계의 관심을 끈 이유는 이들의 천연물군이 마약중독 치료제로써 가능성을 보였기 때문이다. 또한 이보가 알칼로이드가 생 합성적으로 변형된 천연물 중 빈블라스틴(vinblastine)은 현재 항암제로 쓰이고 있다. 최근에는 이보가 알칼로이드로부터 자연적으로 파생된 다양한 형태의 천연물군이 대거 발견되며 학계와 산업계의 관심도 커지고 있다. 천연물 전합성(全合成)은 간단한 시작물질로부터 다단계의 화학반응을 통해 원하는 천연물을 합성하는 학문 분야이다. 그러나 이 다단계 화학반응을 거치는 과정에서 합성효율이 낮아지는 한계가 있다. 한 교수 연구팀은 이보가 알칼로이드 천연물인 카타란틴이 미 식품의약국(FDA) 승인 항암제인 나벨빈(Navelbine®)의 공업원료로 쓰여 시중에서 쉽게 구할 수 있다는 점에 착안했다. 산화와 재배열을 통해 카타란틴의 구조를 변형시켜 고부가가치의 포스트이보가 천연물을 효율적으로 합성했다. 연구팀은 이번 연구에서 이보가 알칼로이드에서 자연적으로 파생되면서 분자적 재배열을 이룬 천연물군을 ‘포스트이보가’ 알칼로이드라고 이름 지었다. 그리고 다양한 효소의 작용을 통해 식물 내에서 이뤄지는 이보가 골격의 분자적 재배열을 화학적으로 구현하는 데 성공했다. 한 교수팀이 합성에 성공한 포스트이보가 알칼로이드는 타버틴진(tabertinggine), 보아틴진(voatinggine), 디피닌(dippinine) B로 이 중 보아틴진과 디피닌 B는 최초의 합성이다. 특히 디피닌 천연물군은 30년 이상 학계의 관심을 받아왔음에도 정복하지 못한 난공불락의 천연물로 여겨졌는데 한 교수 연구팀이 이번에 최초로 합성에 성공했다. 한 교수는 “이번 연구는 포스트이보가 알칼로이드 합성에 새로운 패러다임을 부여한 연구이다”며 “본 연구를 통해 다양한 항암제 및 마약중독 치료제 후보물질을 합성할 수 있는 원천기술을 확보했다는 데 의의가 있다”라고 말했다. 이번 연구는 한국연구재단의 이공분야 기초연구사업 중견연구자지원사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 포스트이보가 알칼로이드의 합성전략 모식도 그림2. 디피닌 B의 합성 경로
2018.11.15
조회수 9496
김상율 교수, 투명 유연 디스플레이 기판용 소재 개발
〈 김상율 교수 연구팀. 왼쪽부터 김태형, 김성종 박사과정, 김상율 교수, 이동휘, 윤영록 석사과정〉 우리 대학 화학과 김상율 교수 연구팀이 투명 유연 디스플레이를 제작할 수 있게 해주는 고분자를 합성하는 데 성공했다. 연구팀이 개발한 고분자는 유리와 같은 투명성과 열팽창계수를 갖는 고성능의 무정형 고분자로 유기소재의 열팽창 제어에 응용 가능할 것으로 기대된다. 김선달, 이병용 연구원이 주도한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 10월 26일자 온라인 판에 게재됐다.(논문명 : Poly(amide-imide) materials for transparent and flexible displays ) 차세대 디스플레이로 유망한 투명하면서도 유연한 디스플레이를 제조하기 위해서는 유리와 같은 수준의 투명성과 열팽창계수를 가지면서도 휘어지고 접을 수 있는 기판소재가 필요하다. 그러나 고분자 소재 중 이러한 조건을 갖는 유연 고분자 소재는 알려진 바 없었다. 모든 물체는 열을 받으면 팽창하고 차가워지면 수축하는 성질을 갖는다. 세라믹이나 금속 소재에 비해 유기물질로 이뤄진 고분자 소재는 열에 의한 팽창이 상대적으로 매우 크다. 얇고 가벼운 평판디스플레이에 사용되는 반도체소자는 세라믹과 비슷한 열팽창계수를 갖고 있어 열팽창계수의 차이가 큰 고분자 필름 위에 반도체소자를 만들게 되면 작동 시 발생하는 열에 의한 팽창과 수축의 차이로 소자가 파괴되는 문제가 발생한다. 따라서 반도체소자와 기판의 열팽창계수를 일치시키는 것은 성공적인 디스플레이를 제조하는데 매우 중요한 일이다. 무정형인 투명한 고분자 물질의 열팽창계수를 줄이는 방법으로 고분자 사슬들을 연결시켜 망상구조(특정 다각형이 이어진 그물 모양의 구조)를 형성시키는 방법이 알려져 있다. 하지만 망상 구조를 갖는 고분자 물질은 유연성을 잃어버리고 필름으로 제조해도 유연하지 않게 된다. 김 교수 연구팀은 문제 해결을 위해 고분자 사슬 간 거리를 조절하는 방식을 이용했다. 고분자 물질을 합성할 때 고분자 사슬 간에 상호작용하는 힘을 도입하고 힘의 방향이 수직으로 교차하게 만들며 사슬 간 거리를 적절히 조절하면 온도에 따른 팽창 및 수축을 억제할 수 있다. 연구팀은 이러한 화학구조를 투명한 고분자 물질에서 구현하는데 성공했다. 김상율 교수팀이 합성에 성공한 새로운 고성능 고분자 물질인 투명한 폴리아마이드이미드 필름은 열팽창정도가 유리 수준으로 낮으면서도(열팽창계수: 4ppm/oC) 유연하며 아몰레드(AMOLED) 디스플레이 제조공정에 적용할 수 있는 내열성을 갖고 있다(>400oC). 연구팀은 새로 합성된 투명 폴리아마이드이미드 필름 위에 이그조 박막 트랜지스터(IGZO TFT)소자를 제작해 필름을 반경 1mm까지 접어도 소자가 정상적으로 작동되는 것을 확인했다. 김 교수는 “이번 연구 결과는 그간 난제로 여겨졌던 무정형 고분자의 열팽창을 화학적 가교결합 없이 조절해 유리 정도 수준으로 낮추면서도 유연성을 확보하고 동시에 투명하게 만드는 방법을 제시한 흥미로운 연구결과이다”며 “다양한 유기소재의 열팽창을 제어하는 데 응용 가능할 것으로 기대된다”고 말했다. 화학과와 전기및전자공학과, 나노과학기술대학원이 공동으로 참여한 이번 연구는 한국연구재단 중견연구자지원사업과 삼성미래기술센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 투명 폴리아마이드이미드 필름 위에 제조된 투명하고 유연한 IGZO TFT의 구조 그림2. 투명한 폴리아마이드이미드 고분자의 화학구조
2018.11.08
조회수 10482
김필한 교수 교원창업기업, 3차원 생체현미경 IVM-CM 출시
〈김필한 교수, 아이빔테크놀로지 김인선 CEO〉 우리 대학 나노과학기술대학원/의과학대학원 김필한 교수 연구팀이 소속된 교원창업기업 아이빔테크놀로지(IVIM Technology, Inc)가 3차원 올인원 생체 현미경 ‘IVM-CM’과 ‘IVM-C’를 개발했다. 이는 김필한 교수 연구팀의 혁신적 생체현미경(IntraVital Microscopy, IVM) 원천기술을 토대로 개발한 것으로 미래 글로벌 바이오헬스 시장에 활용될 예정이다. 세계적 현미경 제조사들의 기술을 넘어 혁신적 원천 기술을 기반으로 개발된 ‘IVM-C’와 ‘IVM-CM’은 여러 인간 질환의 복잡한 발생 과정을 밝히기 위한 기초 의․생명 연구의 차세대 첨단 영상장비가 될 것으로 기대된다. 생체현미경은 바이오제약 분야에서 크게 주목받고 있다. 최근 바이오제약 산업은 단순 합성약물개발보다 생체의 미세 구성단위인 세포 수준에서 복합적으로 작용하는 면역치료제, 세포치료제, 유전자치료제, 항체치료제 등 새로운 개념의 바이오의약품 개발에 집중하고 있기 때문이다. 인체는 수없이 많은 세포들이 복잡한 상호작용을 통해 동작한다. 그러나 현재 신약개발 전임상 단계에서는 시험관 내(in-vitro)와 생체 외(ex-vivo) 실험처럼 상호작용이 일어나지 않는 방식의 연구가 주로 수행되고 있다. 이러한 실험 결과들로만 얻은 결과로 임상시험에 진입한다면 오류와 실패의 가능성이 높아진다. 따라서 신약개발을 위한 임상시험 전 마지막 단계에서 반드시 살아있는 동물에서의 생체 내(in-vivo) 실험으로 효능 분석이 진행돼야 한다. 생체현미경 기술은 바로 이 과정에서 살아있는 동물 내부의 목표로 하는 세포, 단백질과 주입된 물질의 움직임을 동시에 3차원 고해상도 영상으로 직접 관찰할 수 있어 시험 결과의 오류, 시간, 비용을 현저히 줄일 수 있다. 기존 현미경 기술을 살아있는 생체에 적용하려면 영상획득 과정 동안 생체를 유지하기 위한 여러 추가적인 장비가 필요하다. 또한 영상 속도와 해상도의 한계로 인해 생체 내부의 세포를 직접 관찰하기 어려웠다. 아이빔테크놀로지의 ‘IVM-C’와 ‘IVM-CM’모델은 최초의 올인원 3차원 생체현미경 제품으로 살아있는 생체 내부조직을 구성하는 세포들을 고해상도로 직접 관찰할 수 있다. 기존 MRI나 CT 등으로 불가능했던 신체의 다양한 장기 내부에서 움직이는 세포들을 하나하나 구별해 관찰하는 것이 가능하다. 이를 통해 다양한 질병이 몸속에서 발생하는 과정에 대해 자세한 세포단위 영상 정보를 제공할 수 있다. 특히 ‘IVM-C’와 ‘IVM-CM’모델은 독보적인 초고속 레이저스캐닝 기술을 이용해 기존 기술수준을 크게 뛰어넘는 고해상도와 정밀도로 살아있는 생체 내부의 다양한 세포 및 주변 미세 환경과 단백질 등의 분자를 동시에 영상화하는 것이 가능하다. ‘IVM-C’모델은 살아있는 생체 내부의 고해상도 공초점 영상을 총 4가지 색으로 동시에 획득할 수 있으며, ‘IVM-CM’모델은 공초점 영상과 더불어 고속펄스레이저를 이용한 다중광자 영상까지 획득할 수 있다. 최고기술책임자(CTO) 김필한 교수는 “‘IVM-C’와 ‘IVM-CM’은 세포치료제, 면역치료제, 신약 및 선도물질 효능 분석 시 다양한 세포들이 존재하는 생체 내 환경에서 단일 세포 단위의 정밀한 효능 분석이 가능한 유일한 장비로 생명 현상을 보다 정밀하게 종합 분석하기 위한 혁신적 원천 기술로 급성장할 글로벌 바이오헬스 시장을 개척할 수 있는 차세대 의료, 의약 기술 발전을 가속화할 핵심 기술이 될 것이다”고 말했다. 아이빔테크놀로지는 시장성과 성장 가능성을 높게 평가받아 창업 후 3개월 만인 작년 9월 30억 원의 투자 유치를 달성한 바 있다. 대표이사는 김인선 전 제넥신 경영지원본부장, 최고기술책임자는 김필한 교수, 영업 및 마케팅 총괄은 독일 광학 기업인 칼자이스에서 14년간 경험을 쌓은 박수진 이사가 맡고 있다. 또한 우리 대학 박사 출신들로 구성된 기술개발팀과 연구서비스팀이 차세대 후속 장비 개발과 글로벌 바이오헬스 시장 활성화를 위해 노력하고 있다. 김필한 교수 연구팀은 창업원 엔드-런(End-Run) 사업화도약과제에 참여했으며, 아이빔테크놀로지는 창업원의 지원을 받아 설립됐다. □ 사진 설명 사진1. IVM-CM 장비사진 사진2. IVM-CM 생체영상결과 사진 사진3. IVM-CM 생체 내부 세포 추적 사진
2018.09.05
조회수 12459
이해신 교수, 와인성분 통해 심장에 정맥주사로 약물 전달 기술 개발
〈 이 해 신 교수 〉 우리 대학 화학과 이해신 교수 연구팀이 와인의 떫은맛을 내는 성분인 탄닌산(tannic acid)을 이용해 간단한 정맥주사만으로도 약물을 심장 조직에 전달할 수 있는 기술을 개발했다. 연구팀은 탄닌산을 단백질, 펩타이드 등의 약물과 혼합시켜 입자화 하는 방법을 통해 심장조직을 표적할 수 있음을 규명했다. 연구팀의 심장 질환의 효율적 치료를 위한 표적화 약물전달 기술은 단백질 기반의 다양한 신약에 적용 가능할 것으로 기대된다. 안전성평가연구소의 예측모델 연구센터 김기석 박사 연구팀과 공동으로 수행된 이번 연구는 네이처 자매지 ‘네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)’ 4월 30일자 온라인 판에 게재됐다. 심장은 인체 내 가장 중요한 기관으로 분당 60~100회의 박동을 하는 동안 약 5리터의 혈액을 뇌를 포함한 전신에 공급하는 역할을 한다. 심장은 심근이라는 근육을 이용해 끊임없이 박동하는 운동성이 높은 기관이다. 심장 및 관련 혈관 질병을 심혈관계-순환계 질환이라고 하는데 이는 우리나라 사망 원인 2위를 차지한다. 고혈압, 당뇨, 고지혈증, 흡연, 비만 등 현대인의 불규칙한 식습관 및 생활습관으로 인해 나타날 수 있다. 대표적으로 심장으로 가는 관상동맥이나 미세한 혈류들이 좁아져 산소 및 영양분 공급이 원활하지 못해 발생하는 심근경색이 있다. 많은 연구자들이 심혈관계 질환 극복을 위한 화학약물요법이나 치료용 단백질 등을 개발하고 있다. 그러나 여전히 직접적인 수술, 카테터 및 스텐트 삽입 등에 의존하고 있으며 일반 정맥주사로 개발된 약물을 심장에 효율적으로 전달하는 기술은 개발되지 않았다. 심장의 강한 운동성으로 인해 정맥으로 주사된 약물이 순환하는 동안 심장으로의 전달 효율이 급격하게 저하되기 때문이다. 문제 해결을 위해 연구팀은 과일 껍질, 견과류, 카카오, 와인 등에 다량으로 존재하는 탄닌산이라는 물질을 이용했다. 탄닌산은 와인의 떫은맛을 내는 폴리페놀 분자의 일종으로 혀에 존재하는 점막 단백질과 결합해 떫은맛을 낸다고 알려져 있다. 연구팀은 탄닌산과 단백질 사이의 강한 분자 간 결합력을 이용해 치료용 단백질, 유전자 전달체인 바이러스 또는 기능성 펩타이드 약물 등을 간단하게 섞어주는 방법으로 입자화에 성공했다. 그리고 이를 주사했을 때 심장을 표적화할 수 있다는 사실을 발견했다. 탄닌산을 이용한 단백질 입자화 기술의 원리는 일종의 ‘분자 수준에서의 코팅’ 기술이다. 입자화된 단백질 복합체 표면에 코팅된 탄닌산이 심장의 기능을 유지하기 위해 밀집돼 있는 엘라스틴 및 콜라겐 단백질과 부가적으로 강한 상호작용을 하며 심장 조직에 부착된 상태로 오랜 시간 머무는 심장 표적화 기술이다. 이러한 탄닌산-단백질 복합체는 단백질만을 주사했을 때와 비교하면 5일 이상 장기적으로 혈관 내에서 순환됨을 확인했다. 이 교수 연구팀은 예전부터 탄닌산을 비롯한 접착성, 코팅성을 갖는 다양한 폴리페놀 재료를 응용해 의료용 생체 재료를 개발해 왔다. 실제로 심근경색 동물 모델에 탄닌산과 섬유아세포 증식인자를 섞어서 만든 약품을 주입하고 4주가 지난 뒤 심근경색이 일어난 크기가 감소했을 뿐 아니라 좌심실 압력 및 심박출량 등이 정상에 가깝게 호전되는 것을 확인했다. 이해신 교수는 “지금까지 심장질환 관련한 많은 약물들이 개발됐음에도 불구하고 상대적으로 약물을 심장에 효율적으로 전달하는 방법은 개발되지 않았다”며 “이번 기술은 기존 약물들을 새롭게 공식화해 개량신약으로 만들 수 있는 원천기술이다”고 말했다. 이번 연구는 연구재단 중견연구자 도약연구, 보건복지부 암정복프로그램, 산업통상자원부의 바이오산업핵심기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 탄닌산으로 제조한 단백질 복합체가 심장 조직에 전달되는 모식도 그림2. 바이러스 유전자 발현 효율 및 치료기능성을 보여주는 연구결과
2018.05.16
조회수 16085
박병국, 김갑진 교수, 고효율 스핀 신소재 개발
〈 박 병 국 교수, 김 갑 진 교수 〉 우리 대학 신소재공학과 박병국 교수와 물리학과 김갑진 교수 연구팀이 자성메모리(Magnetic Random Access Memory, MRAM) 구동의 핵심인 스핀전류를 효율적으로 생성하는 새로운 소재를 개발했다. 이번 연구는 ‘네이처 머티리얼즈(Nature Materials)’ 3월 19일자 온라인 판에 게재됐다. 이 연구는 고려대 이경진 교수, 미국국립표준연구소(NIST)의 Mark Stiles 박사 연구팀 등과 공동으로 수행됐다. 자성메모리는 외부 전원 공급이 없는 상태에서 정보를 유지할 수 있고 집적도가 높으며 고속 동작이 가능해 차세대 메모리로 주목받고 있다. 자성메모리의 동작은 스핀전류를 자성소재에 주입해 발생하는 스핀토크로 이뤄지기 때문에 스핀전류의 생성 효율이 자성메모리의 소모 전력을 결정하는 핵심 기술이다. 이번 연구에서는 강자성-전이금속 이중층이라는 새로운 소재 구조에서 스핀전류를 효과적으로 생성할 수 있음을 이론 및 실험을 통해 규명했다. 특히 이 구조는 기존 기술과 달리 생성된 스핀전류의 스핀 방향을 임의로 제어할 수 있다. 이 소재를 차세대 메모리로 주목받는 스핀궤도토크 기반 자성메모리에 적용하면 스핀토크 효율이 높아지고 외부자기장 없이 동작이 가능해 스핀궤도토크 자성메모리의 실용화를 앞당길 수 있을 것으로 기대된다. 스핀궤도토크 자성메모리는 고속 동작 및 비휘발성 특성으로 S램(D램에 대응하는 반도체 기억소자로 전원만 공급하면 기억된 정보가 계속 소멸하지 않는 램) 대비 대기전력을 획기적으로 감소시켜 모바일, 웨어러블, 사물인터넷용 메모리로 활용 가능하다. 이번 연구성과는 과학기술정보통신부 미래소재디스커버리사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 강자성-전이금속 이중층에서 스핀전류 생성 개략도
2018.04.13
조회수 14807
변혜령 교수, 빠른 충전 가능한 리튬-산소전지 개발
〈 변 혜 령 교수 〉 우리 대학 화학과 변혜령 교수 연구팀과 EEWS 정유성 교수 연구팀이 높은 충전 속도에서도 약 80%의 전지 효율 성능(round-trip efficiency)을 갖는 리튬-산소 전지를 개발했다. 기존에 개발된 리튬-산소 전지는 충전 속도가 높아지면 전지 효율 성능이 급속히 저하되는 단점이 있었다. 이번 연구에서는 방전 생성물인 리튬과산화물의 형상 및 구조를 조절해 난제였던 충전 과전위를 낮추고 전지 효율 성능을 향상시킬 수 있음을 증명했다. 특히 값비싼 촉매를 사용하지 않고도 높은 성능을 가지는 리튬-산소 전지를 제작할 수 있어 차세대 전지의 실용화에 기여할 것으로 보인다. 이번 연구결과는 네이처 커뮤니케이션즈(Nature Communications) 2월 14일자 온라인 판에 게재됐다. 리튬-산소 전지는 리튬-이온 전지보다 3~5배 높은 에너지 밀도를 가지고 있어 한 번 충전에 장거리 주행을 할 수 있는, 즉 장시간 사용이 요구되는 전기차 및 드론 등의 사용에 적합한 차세대 전지로 주목받고 있다. 하지만 방전 시 생성되는 리튬과산화물이 충전 시 쉽게 분해되지 않기 때문에 과전위가 상승하고 전지의 사이클 성능이 낮은 문제점을 갖고 있다. 리튬과산화물의 낮은 이온 전도성과 전기 전도성이 전기화학적 분해를 느리게 만드는 것이다. 리튬과산화물의 전도성을 향상시키고 리튬-산소 전지의 성능을 높이기 위해 연구팀은 메조 다공성 탄소물질인 CMK-3를 전극으로 사용해 일차원 나노구조체를 갖는 비결정질 리튬과산화물을 생성하는 데 성공했다. 전극을 따라 생성되는 비표면적이 큰 비결정질의 리튬과산화물은 충전 시 빠르게 분해돼 과전위의 상승을 막고 충전 속도를 향상시킬 수 있다. 이는 기존의 결정성을 갖는 벌크(bulk) 리튬과산화물과 달리 높은 전도성을 갖기 때문이다. 이번 결과는 촉매나 첨가제의 사용 없이도 리튬과산화물의 크기 및 구조를 제어해 리튬-산소 전지의 근본적 문제를 해결할 수 있는 방법을 제시했다는 의의를 갖는다. 변혜령 교수는 “리튬과산화물의 형상, 구조 및 크기를 제어해 전기화학 특성을 변화시킬 수 있음을 증명함으로써 리튬-산소 전지뿐만이 아닌 다른 차세대 전지의 공통된 난제를 해결할 수 있는 실마리를 찾았다”고 말했다. 이론 해석을 제공한 정유성 교수는 “이번 연구 결과로 기존에 절연체로 여겨진 리튬과산화물이 빠르게 분해될 수 있는 반응 원리를 이해할 수 있었다”고 말했다. 이번 연구는 한국연구재단의 지원을 받아 수행됐으며 일본의 리츠메이칸(Ritsumeikan) 대학 가속기 센터와 공동연구로 진행됐다. □ 그림 설명 그림1. 리튬과산화물 도식 및 투과전자현미경 사진 그림2. 충전 속도 특성 비교 그림3. DFT 계산을 통한 (a) 결정질 및 (b) 비결정질 리튬과산화물의 충방전 에너지 다이어그램
2018.03.29
조회수 16491
장석복, 백무현 교수, 상온 감마-락탐 합성 성공해 사이언스 紙 게재
석유, 천연가스 등 자연에 풍부한 탄화수소로부터 의약품이나 화학소재의 원료가 되는 락탐을 합성할 수 있는 방법이 나왔다. 우리 대학 화학과 장석복 교수, 백무현 교수 공동 연구팀이 반응 효율이 높은 이리듐 촉매를 개발해 상온에서 감마-락탐을 합성하는데 성공했다. 이번 연구성과는 세계적 권위의 학술지 사이언스(Science) 3월 2일자 온라인 판에 게재됐다. 감마-락탐은 뇌전증 치료제(레비티라세탐)나 혈관형성 억제제(아자스파이렌)와 같이 복잡한 유기분자의 핵심 구성성분으로 의약품, 합성화학, 소재 등에 폭넓게 활용된다. 자연에 풍부한 탄화수소로부터 감마-락탐을 만들기 위해 많은 연구가 있었지만 탄화수소는 상온에서 반응성이 낮아 합성하는데 큰 어려움이 있었다. 탄화수소에서 감마-락탐을 합성하기 위해서는 탄소-수소 결합을 탄소-질소 결합으로 변환하는 질소화반응이 필요한데 이 과정에서 중간체인 카보닐나이트렌(carbonylnitrene)이 상온에서 너무 쉽게 부산물로 분해돼 합성이 불가능했기 때문이다. 연구팀은 최적화된 촉매를 계산화학으로 분석해 예측하고 실험에 돌입하는 방식으로 중간체 분해 문제를 해결할 수 있었다. 이론 연구팀은 밀도범 함수를 활용한 계산화학으로 어떤 촉매가 탄화수소에 효율적인 반응을 일으킬지 분석하고 시뮬레이션을 통해 완성도 높은 촉매를 개발했다. 이를 바탕으로 실험 연구팀이 중간체 분해 및 부산물 형성을 억제하는 이리듐 촉매를 개발하고 탄화수소에 적용해 감마-락탐 합성에 성공했다. 장석복 교수는 “이번 연구는 질소화 반응의 중간체 분해 문제를 해결함으로써 탄화수소로 감마-락탐을 합성하는 계기를 만들 수 있었다”며 “새로운 금속 촉매를 설계하고 합성해 성공적으로 적용시키는 모든 과정에 열정적으로 임해준 참여 학생들에게 깊이 감사한다”고 말했다. 또한 “이번에 개발한 촉매반응의 확장연구를 통해 학문적인 진보는 물론 합성된 물질의 생리활성 및 임상 연구를 통한 의약품과 신소재 개발 등 산업적인 면에서도 큰 기여할 수 있게 되기를 바란다”고 말했다. □ 그림 설명 그림1. 연구진이 개발한 새로운 이리듐 촉매로 만든 질소화 반응 메커니즘 그림2. 밀도범함수를 활용한 계산화학으로 예측한 반응 경로와 에너지 장벽 그림3. 본 연구에서 개발한 질소화 촉매반응의 메커니즘과 합성한 다양한 질소고리 화합물
2018.03.02
조회수 11406
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 18