본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%AC%BC%EB%A6%AC%ED%95%99%EA%B3%BC
최신순
조회순
홀로토모그래피 첨단바이오 분석 전략 소개
첨단 바이오/의학 분야에서 살아있는 세포와 조직 뿐만 아니라 오가노이드의 3차원 영상을 측정하고 정밀하게 분석하는 기술에 대한 중요도가 커지고 있다. 홀로토모그래피기술은 세포와 조직의 내부를 고해상도로 관찰할 수 있게 하여 재생의료, 맞춤형 의료, 난임 치료 등 연구에서 잠재력이 높게 평가되고 있다. 한국연구진이 광학 전문가가 아닌 의생명과학 연구자들을 대상으로 홀로토모그래피 장점과 넓은 응용 가능성을 알리는 논문을 발표해서 화제다. 우리 대학 물리학과 박용근 교수 연구팀이 기초과학연구원(IBS, 원장 노도영), 한국기초과학지원연구원(KBSI, 원장 양성광)과 공동 집필하여 홀로토모그래피의 원리와 응용 현황, 한계점 및 향후 방향성을 망라한 논문을 국제학술지에 게재했다고 30일 밝혔다. 홀로토모그래피는 엑스레이(X-ray) CT와 물리적인 원리는 동일하나 X선을 이용해 사람 몸속을 보는 CT와는 달리, 빛을 이용하여 세포와 조직의 내부를 고해상도로 관찰할 수 있게 한다. 염색이나 표지(label)와 같은 화학적⋅유전적 처리 없이 세포와 조직의 3차원 영상을 세포 소기관 수준의 해상도로 관찰할 수 있게 해주어, 이전에는 불가능했던 바이오 연구와 산업의 다양한 측정과 분석 한계를 극복할 수 있다. 살아있는 세포와 조직 뿐만 아니라 장기를 모사하는 3차원 구조체인 오가노이드(organoids)는 신약 개발 과정에서 동물 실험을 대체하고, 환자 맞춤형 치료법을 빠르고 효과적으로 확인하며, 궁극적으로 장기를 대체하는 치료 목적으로 활발하게 연구 개발이 진행 중이다. 오가노이드와 줄기세포 콜로니와 같은 3차원 생체 시편을 염색이나 전처리 없이 세포 소기관 수준으로 관찰하는 것은 3차원 생물학과 재생의학 분야에서 기초 연구 혁신과 바이오산업 응용 측면에서 모두 중요한 의미를 지니고 있다. 연구팀이 집필한 이번 논문에서는 3차원 생물학, 재생의료, 암 연구 등 다양한 분야에 홀로토모그래피 기술을 적용한 사례와 미래 발전 가능성을 소개했다. 또한, 광원의 결맞음(coherency) 정도에 따른 홀로토모그래피 기술을 유형화하고, 각 기술의 원리, 한계점, 극복 방안을 자세히 설명했다. 특히, 인공지능과 홀로토모그래피를 결합해 세포와 오가노이드를 관찰할 수 있는 한계를 크게 확장할 수 있는 전략을 심도 있게 다뤘다. 홀로토모그래피 기술은 첨단 바이오산업을 견인할 수 있는 가능성으로 인해, 전 세계 주요 대학 연구진들과 기업들이 관심을 갖고 연구 기술 개발에 투자하고 있는 분야다. 박용근 교수 연구팀은 지난 10여 년간 다양한 핵심 원천 기술과 응용 연구를 수행하며, 홀로토모그래피 분야를 국제적으로 선도하고 있다. 우리 대학 자연과학연구소 김건 박사, 생명과학과 윤기준 교수팀, IBS 유전체 교정 연구단(구본경 단장), 한국기초과학지원연구원의 이성수 박사팀 등 연구진과 공동 집필한 이번 논문은 ‘Nature Reviews Methods Primers’에 7월 25일 자 게재됐다. (논문명: Holotomography) 한편, 이번 연구는 연구재단의 리더연구사업과 창의도전연구지원사업, 과학기술정보통신부의 홀로그램핵심기술지원사업, 나노 및 소재 기술개발사업, 보건복지부의 보건의료 R&D 사업의 지원을 받아 수행됐다.
2024.07.30
조회수 1736
마그논 오비탈 홀 효과로 반도체 발열문제 실마리
기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초고집적 차세대 반도체 기술을 구현할 것으로 기대되는 스핀트로닉스와 오비트로닉스는 줄발열*로 인한 에너지 소모 문제가 필연적으로 동반되는 치명적인 결점이 있었다. 한국 연구진이 초저전력 오비탈** 기반 정보처리 기술의 기틀을 세울 수 있을 기술을 개발하여 화제다. *줄 발열: 도체에 전류가 흐를 때 일어나는 발열 현상. **오비탈: 입자 회전 운동으로 발생되는 각운동량을 뜻함. 우리 대학 물리학과 김세권 교수 연구팀이 포항공과대학교 물리학과 이현우 교수팀과의 공동 연구로 반강자성체*에서 마그논 오비탈 홀 효과**를 세계 최초로 발견해 물리 및 화학 분야 세계적인 학술지 `나노 레터스(Nano Letters)'에 게재했다고 17일 밝혔다. *반강자성체: 인접한 원자의 전자스핀이 서로 반대로 정렬하여 순 자성이 없는 물질을 말함. *마그논 오비탈 홀 효과: 축구의 바나나킥처럼, 마그논이 회전방향(오비탈)에 따라 진행궤적이 휘어지는 현상을 의미한다. 마그논계에서의 오비탈 홀 효과는 기존에 예측된 바가 없는 새로운 현상이기에 학문적으로 흥미로우며, 기존 스핀 자유도에 국한되었던 마그논 동역학을 오비탈 자유도를 통해 한 단계 확장하는 의의가 있음. 마그논*을 이용한 스핀트로닉스 소자의 경우 줄 발열로 인한 에너지 소모 없이 기존의 컴퓨팅 기술을 대체할 수 있다는 장점이 있어 전 세계 각국 학계에서 경쟁적으로 연구가 이뤄지고 있다. 마그논 스핀에 관해서는 지난 수십 년간 활발히 연구됐으나, 마그논 오비탈의 특성에 관한 이론 정립은 아직 아무도 시도하지 않은 문제였다. *마그논: 양자화된 스핀 파동을 뜻함. 물리학과 김세권 교수 연구팀은 MnPS3(삼황화린망간)와 같이 벌집 격자를 이루는 2차원 반강자성체에서 강한 마그논 오비탈 홀 효과가 나타난다는 것을 세계 최초로 발견했다. 기존에 알려진 마그논 홀 효과는 스핀궤도결합에 기인하기에 그 크기가 작은 데 반해, 이번 연구를 통해 발견된 마그논 오비탈 홀 효과는 스핀궤도결합과 무관하게 결정구조에서 기인해 크기가 상당히 크다는 것을 연구팀이 이론적으로 보였다. 또한 연구팀은 전기적으로 마그논 오비탈 홀 효과를 측정할 수 있는 실험방법도 제시했다. 이는 스핀 자유도에만 국한되어 있던 마그논 연구의 범위를 스핀과 오비탈로 확장한 연구 결과로 마그논 오비트로닉스라는 연구의 새 장을 열어 줄 것으로 예상된다. 김세권 교수는 "마그논 오비탈과 그 수송이론의 정립은 아직 세계적으로 아무도 시도하지 않은 독창적이고 도전적인 문제이고, 기존 정보처리 기술의 한계를 혁신적으로 뛰어넘는 초저전력 오비탈 기반 정보처리 기술의 기틀을 세울 수 있을 것ˮ이라고 기대감을 내비쳤다. 이번 연구는 우리 대학 김세권 교수, 고경춘 박사, 안대현 학생, 그리고 포항공과대학교 이현우 교수의 공동 연구로 진행되었으며, 삼성미래기술육성사업, 한국연구재단 해외우수과학자 유치사업 플러스(브레인 풀 플러스), 세종과학펠로우십의 지원을 받아 수행됐다.
2024.06.17
조회수 2305
강유전체 ‘3차원 소용돌이’ 20년 난제 풀어
약 20년 전 아주 작은 나노 크기 0차원 강유전체 내부에 특이한 형태의 분극 분포가 발생할 수 있음이 로랑 벨라이쉬(Laurent Bellaiche) 교수(現 미국 아칸소대 물리학과 교수) 연구진에 의해 이론적으로 예측됐다. 해당 소용돌이 분포를 적절히 제어하면 기존에 비해 10,000배 이상 높은 용량의 초고밀도 메모리 소자로 응용이 가능할 것이라는 가능성이 제시돼 학계의 이목을 끌었으나, 3차원 분극 분포 측정의 어려움으로 인해 실험적인 규명이 되지 못하고 있었다. 우리 대학 물리학과 양용수 교수 연구팀이 포항공과대학교, 서울대학교, 한국기초과학지원연구원과의 공동연구 및 미국 로런스 버클리 국립연구소, 아칸소대학교 연구진과의 국제협력 연구를 통해 나노강유전체 내부의 3차원 소용돌이 형태 분극 분포를 최초로 실험적으로 규명하였다고 30일 밝혔다. 영구자석과 같이 외부의 자기장이 없어도 자화 상태를 스스로 유지할 수 있는 물질들을 강자성체(ferromagnet)라 하고, 강유전체(ferroelectric)는 외부의 전기장 없어도 분극상태를 유지할 수 있는 물질로서 강자성체의 전기(electric) 버전이라고 생각하면 된다. 강자성체(자석)의 경우 나노 크기로 너무 작게 만들면 일정 이하 크기에서는 자석으로서의 성질을 잃어버린다는 것이 잘 알려져 있는 반면, 강유전체를 모든 방향에서 아주 작게 나노 크기로 만들면(즉 0차원 구조를 만들면) 어떤 현상이 발생하는지는 오랜 기간 논란거리였다. 인체 내부 장기들을 3차원적으로 보기 위해 병원에서 CT 촬영을 하는 것과 동일한 방식으로, 양용수 교수 연구팀은 전자현미경을 이용해 다양한 각도에서 투과전자현미경 이미지를 획득하고, 이를 고급화된 재구성 알고리즘을 통해 3차원으로 재구성하는 방식으로 원자 분해능 전자토모그래피 기술을 개발 및 응용하였다. 이를 통해 연구팀은 강유전체인 바륨-티타늄 산화물(BaTiO3) 나노입자 내부 원자들의 위치를 3차원적으로 완전히 측정하고, 내부의 3차원적 분극 분포 또한 단일 원자 단위로 규명했다. 분극 분포 분석 결과, 20년 전에 이론적으로 예측됐던 대로 강유전체 내부에 소용돌이를 비롯한 다양한 위상학적 분극 분포가 발생하고, 강유전체의 크기에 따라 내부 소용돌이의 개수 또한 제어할 수 있다는 사실을 연구팀은 최초로 실험적으로 밝힐 수 있었다. 연구팀은 이 결과를 바탕으로 20년 전 해당 소용돌이 분극 이론을 최초 제시했던 벨라이쉬(Bellaiche) 교수와 국제공동연구를 수행했고, 실험에서 얻은 소용돌이 분포 결과가 이론적인 계산으로도 잘 설명됨을 추가적으로 증명했다. 연구를 주도한 양용수 교수는 "이번 결과는 기판의 유/무나 주변 환경에 무관하게 강유전체 크기와 형태를 적절히 조절하는 것만으로도 나노 크기에서 강유전성 소용돌이를 제어할 수 있음을 시사하였다. 아울러, 이러한 분극 분포 소용돌이의 개수 및 회전 방향을 조절함으로써 기존보다 약 10,000배 이상 많은 양의 정보를 같은 크기의 소자에 저장할 수 있는 차세대 고밀도 메모리 소자 기술로 발전시킬 수 있을 것으로 기대한다” 라고 말했다. 물리학과 정채화 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 에 지난 5월 8일 字 게재됐다. (논문명 : Revealing the Three-Dimensional Arrangement of Polar Topology in Nanoparticles). 한편 이번 연구는 한국연구재단 개인기초연구지원사업 및 KAIST 특이점교수사업의 지원을 받아 수행됐다.
2024.05.30
조회수 2881
양자 비평형 현상의 물리적 법칙은
비평형 현상이란, 평형에서 벗어난 상태를 지칭하는 것으로 우리가 일상적으로 자주 마주하는 현상이다. 커피에 우유를 넣고 섞게 되면 우유 분자들은 에스프레소와 섞이면서 카페라테가 되는데, 이렇게 평형을 찾아가는 과정을 비평형 동역학이라고 볼 수 있다. 물리학에서 답하고자 하는 주요한 질문은 ‘양자 역학계에서 일어나는 비평형 현상은 어떤 물리 법칙에 의해 지배되며, 과연 보편적으로 적용할 수 있는 법칙이 존재할지’ 여부다. 우리 대학 물리학과 최재윤 교수 연구팀이 극저온 중성원자 양자 시뮬레이터를 이용해 이론적으로 추측된 비평형 상태의 양자 물성 변화의 보편적 물리 법칙을 확인하는데 성공했다고 27일 밝혔다. 보편적 물리 법칙에 대한 예는 평형상태에서 액체에서 기체가 되는 것처럼 물질의 상이 변화하는 ‘상전이 현상’에서 찾아볼 수 있다. 상전이 일어나는 지점을 임계지점이라고 하는데, 이 지점에 물성의 변화는 입자들의 크기, 밀도, 및 상호작용의 세기 등 물리량에 의존하지 않는다. 예를 들어, 물에서 관측할 수 있는 액체-기체 상전이 임계점 및 자석에서 관측되는 상자성-강자성 상전이 임계점은, 비록 서로 매우 다른 계이지만, 동일한 형태의 물성 변화를 확인할 수 있다. 즉. 물질의 상이 변화되는 임계지점에서 물성의 변화는 입자들의 크기, 밀도, 등 계를 구성하는 미시적인 물리량에 의존하지 않으며, 이를 가리켜 ‘상전이점 근처에서 보편성(universal) 이 존재한다’라고 할 수 있다. 또한 물성의 변화가 수학적으로 동일한 함수를 따를 때 우리는 ‘같은 보편성 부류에(universality class) 속한다’라고 할 수 있다. 비평형 양자 동역학에서도 ‘상전이’ 현상과 같이 보편성 및 보편성 부류가 존재함이 약 10년 전에 제기됐으나, 매우 긴 시간 동안 관측해야 하는 실험적인 어려움이 있어 이에 대한 검증을 엄밀하게 할 수 없었다. 최재윤 교수 연구팀은 강한 상호작용을 갖는 스피너 응집체*를 이용하여, 자기 도메인들의 비평형 조대화 동역학**을 매우 긴시간 동안 연구하였으며, 이를 통해 해당 가설을 검증하였다. 연구팀은 조대화 동역학의 동역학적 형태가 다양한 초기 상태와는 상관없이 동일한 수학적 형태를 따르는 것을 보여 보편성을 확인하였다. 더 나아가 시스템의 대칭성을 바꾸어 주었을 때만 동역학의 수학적 형태가 바뀌는 것을 확인하여, 보편적인 양자 동역학의 분류도 가능함을 보여주었다. *스피너 응집체: 서로 다른 스핀들 간의 상호작용이 있는 보즈-아인슈타인 응집체를 말하며, 보즈-아인슈타인 응집체란 모든 원자들이 하나의 파동함수로 기술이 되는 양자 상태임 **조대화 동역학: 초기에 무수히 많은 자기 영역(magnetic domain)들이 서로 합해지면서 영역들의 크기가 커지는 동역학을 지칭함 물리학과 최재윤 교수는 “이번 연구는 중성원자 양자 시뮬레이터가 비평형 양자 동역학에 가설을 검증하는 데 활용된 중요한 사례이며, 향후 고전 컴퓨터가 흉내 내기 어려운 영역에서 비평형 동역학을 연구해 새로운 물리 법칙을 발견하고 싶다”고 포부를 밝혔다. 물리학과 허승정, 권기량, 허준혁 대학원생 연구원이 참여한 이번 연구는 국제 학술지 `네이처 피직스(Nature Physics)' 3월에 표지로 선정됐다 (논문명: Universality class of a spinor Bose-Einstein condensate far from equilibrium). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.03.27
조회수 2402
양자 컴퓨터로 새로운 물성 연구 성공
양자 물질을 연구하거나 설계할 때 기존의 폰노이만식 전자컴퓨터를 이용한 계산은 근본적인 한계를 가진다. 양자계의 경우 양자 얽힘 등의 효과로 인해 계산량이 기하급수적으로 증가하기 때문이다. 따라서 양자물질 설계를 위해 물질의 특성을 알아내고자 할 때, 양자컴퓨터를 이용하는 양자 시뮬레이션이 필요하다. 우리 대학 물리학과 안재욱 교수 연구팀이 코펜하겐 대학 클라우스 뭴머(Klaus MØlmer) 교수 연구팀과 함께 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 리드버그 원자 양자 컴퓨터를 이용해 양자 자성체의 극단적 특성을 구현하는데 성공했다고 11일 밝혔다. 자성체 물질은 하드 디스크와 같은 전자제품을 비롯해 전력 발전 등에도 사용되는 등 현대 기술의 핵심 요소다. 최근에는 상온 자성체를 넘어서 양자적 특성이 두드러지는 초저온에서 양자 자성체 특성에 관한 연구가 활발히 이뤄지고 있다. 초저온에서 수행되는 물성 분석 및 계측 연구는 MRI 등의 의학 기기 등에 응용될 뿐만 아니라, 차세대 초정밀 제어계측공학을 촉발할 것으로 기대된다. 유명 물리학자 리처드 파인만은 1983년 양자계의 특성을 인공적인 양자계로 모방해 연구하는 양자 시뮬레이션을 제안하였다. 인공적으로 모방한 양자계의 특성을 연구하면 기존 양자계의 특성을 알아낼 수 있다. 양자 시뮬레이션을 이용한 양자 자성체의 연구는 지난 10년간 세계 유수의 대학과 연구소에서 이뤄지고 있으며 이전까지 알려지지 않은 양자 물질의 특성들을 실험적으로 확인하는 성과를 보였다. 현재 양자 물질을 시뮬레이션하는 데 있어 중요한 이슈 중 하나는 극단적인 상황 속 양자 물질의 현상을 관찰하는 것이다. 한편 이와 같은 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 것은 리드버그 원자다. 리드버그 원자는 최외각 전자가 이온화되어 떨어지기 직전의 매우 높은 에너지를 머금고 있는 원자로, 일반 원자의 만 배 정도의 지름을 가지며 (10의 24제곱)배 정도 더 큰 상호작용을 한다. 우리 대학 물리학과 안재욱 교수 연구팀은 최근 리드버그 원자를 이용해 최대 156큐비트급의 양자 컴퓨터 계산을 선보인 바 있다. 이번 연구에서 글로벌 공동연구팀은 리드버그 원자를 이용한 양자 컴퓨터를 이용해 양자 자성체를 설명하는 모형 중 하나인 하이젠베르크 모형*을 양자 컴퓨터로 모방해 구현했다. 특히 이전의 하이젠베르크 모형의 구현과 다르게, 이번 연구에서는 리드버그 원자의 강한 상호작용을 이용한 극단적 이방성 (3차원 중 특정 방향이 다른 방향 대비 1000배 이상 강하게 상호작용하는 특성으로 새로운 연구영역이 확보됨)을 구현하는 데 성공했다. *하이젠베르크 모형: 하이젠베르크 자성체 모형은 자성체 스핀 간의 모든 방향 (x, y, z 방향) 상호작용을 가정한 모형으로 양자 자성체의 대표적 모델 중 하나임. 연구를 주도한 안 교수는 “이번 연구는 리드버그 양자컴퓨터를 이용해 새로운 양자 물성을 연구할 수 있음을 보였다”라고 밝히고 “양자컴퓨터를 이용하는 물성 연구가 활발해질 것”이라고 기대했다. 우리 대학 물리학과 김강흔 대학원생 연구원과 덴마크 오르후스 대학의 팬 양(Fan Yang) 박사후 연구원이 참여한 이번 연구는 국제 학술지 `피지컬 리뷰 X (Physical Review X)' 2월 14권에 출판됐다. (논문명 : Realization of an Extremely Anisotropic Heisenberg Magnet in Rydberg Atom Arrays). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.03.11
조회수 3258
차세대 반도체 솔리톤 안정화 기술 최초 개발
초고속 초저전력 차세대 반도체 기술을 구현할 스핀트로닉스 기술을 한 단계 성장시키는 원동력으로 위상적 솔리톤이라는 구조체를 이용해 정보를 저장하고 전송할 수 있는 초고속 비휘발성 메모리 소자 기술이 개발되었다. 우리 대학 물리학과 김세권 교수 연구팀이 기초과학연구원 복잡계 이론물리 연구단(PCS-IBS) 김경민 박사팀, 한양대학교 물리학과 박문집 교수팀과의 공동 연구로 뒤틀림 자성체*를 이용해 위상적 솔리톤을 안정화시킬 수 있는 기술을 세계 최초로 개발해 물리 및 화학 분야 세계적인 학술지 `나노 레터스(Nano Letters)'에 게재했다고 20일 밝혔다. *자성체: 자성을 띄는 여러 물체를 통칭함 스핀트로닉스는 성장 한계에 다다른 기존 반도체 기술의 근본적인 문제점들을 전자의 양자적 성질인 스핀을 이용해 해결하고자 하는 연구 분야다. 이는 기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초저전력 차세대 반도체 기술을 구현할 것으로 기대되고 있다. 한편 솔리톤이란 특정한 구조가 주변과 상호작용을 통해 사라지지 않고 계속 유지하는 현상을 말하며, 위상적 솔리톤이라는 구조체를 이용해 정보를 저장하고 전송할 수 있는 초고속 비휘발성 메모리 소자 개발이 전 세계 각국 학계와 산업계에서 경쟁적으로 연구가 이뤄지고 있다. 이전까지 차세대 메모리 소자 개발을 위해 연구됐던 위상적 솔리톤으로는 스핀 구조체로 자연계에 존재하는 다양한 자성체 중 수직 이방성*이라고 하는 특수한 성질을 갖는 자성체에서만 안정하다고 알려져, 물질 선택의 제한으로 인해 솔리톤 기반 정보처리 기술 발전에 어려움이 있었다. * 수직 이방성: 자화 방향이 자성체에 수직한 방향을 선호하게 되는 성질 김세권 교수 연구팀은 특정 단층 강자성체* 두 겹을 서로 뒤틀어 접합시켜 이중층 자성체를 구성할 경우, 수직 이방성을 띠지 않는 다른 종류의 자성체에서도 위상적 솔리톤을 안정화시킬 수 있음을 세계 최초로 발견했다. *강자성체: 자성체 중에서도 상온의 철과 같이 자발적 자화를 띄는 물체를 뜻함 이번 연구를 통해 발견된 안정한 위상적 솔리톤은 수직이방성이 아닌 수평 이방성을 띄는 자성체에 존재하는 ‘메론’이라고 불리는 스핀 구조체로서 이전에는 그 안정화 메커니즘이 알려지지 않았던 솔리톤이다. 메론 안정화 기술의 확보로 지금까지 수직 이방성 자성체에만 국한되어 있었던 솔리톤 기반 차세대 반도체 기술 연구를 다양한 자성체로 확대 발전시킬 수 있을 것으로 기대되며, 스핀트로닉스 기술을 한 단계 성장시키는 원동력으로 작용할 것으로 예상된다. 이번 연구 결과는 자성체 내부에서는 안정하지 않은 위상적 솔리톤이 두 자성체를 뒤틀어 접합할 경우, 자성체 간 상호작용을 통해 안정화될 수 있다는 것을 보인 첫 예시다. 여러 자성체를 뒤틀어 접합시키는 경우 자성체의 종류와 뒤틀림 각도를 조절함으로써 무한히 많은 자성 시스템을 구현할 수 있으므로, 이번 연구 결과는 뒤틀림 자성체 기반 스핀 기술이라고 하는 넓은 연구 영역을 새로이 개척했다고 판단된다. 우리 대학 김세권 교수는 "이번 논문은 무한히 많은 가능성을 갖는 뒤틀림 자성체 기반의 새로운 물리 현상 탐색과 활용 연구의 시발점으로 작용할 것ˮ이라고 기대감을 내비쳤다. 이번 연구는 우리 대학 김세권 교수, 우리 대학 고경춘 박사, 그리고 PCS-IBS 김경민 박사, 한양대학교 박문집 교수의 공동 연구로 진행되었으며, 한국연구재단 해외우수과학자 유치사업 플러스(브레인 풀 플러스)의 지원을 받아 수행됐다.
2024.02.20
조회수 2906
100큐비트급 양자컴퓨터 계산데이터 전격 공개
양자컴퓨터는 양자역학의 원리를 활용해 기존의 컴퓨터로는 풀기 어려운 계산을 할 수 있는 컴퓨터다. 양자컴퓨터는 암호 해독, 배터리 소재 개발, 신약 개발 등 다양한 분야에서 그동안 풀지 못한 난제들을 해결할 미래 기술로 주목받고 있다. 우리 대학 물리학과 안재욱 교수 연구팀이 100큐비트급 양자컴퓨터로 조합 최적화 문제를 계산해 계산 결과 데이터베이스와 계산 프로그램을 공개했다고 13일 밝혔다. 조합 최적화 문제 중 하나인 최대 독립집합 문제(Maximum independent set problem)는 SNS상에서 가장 영향력 있는 인물을 찾는 문제, 전력망을 가장 효율적으로 분배하는 법을 찾는 문제 등 다양한 응용이 가능한 문제다. 지난 2023년 KAIST 연구진은 20큐비트급 리드버그 양자컴퓨터를 이용해 최대 독립집합 문제의 풀이를 시연한 바 있다. 일반적으로 100큐비트급 양자컴퓨터의 데이터를 얻기 위해서는 직접 양자컴퓨터를 제작하거나 클라우드 서비스 업체를 이용할 수밖에 없다. 이번에 KAIST 연구진이 공개한 데이터는 관련 분야 연구자뿐 아니라 양자 컴퓨터에 관심 있는 모든 사람이 무료로 데이터에 접근할 수 있게 되었다는 점에서 중요하다고 할 수 있다. 최대 141큐비트를 활용해 70만 종류 이상의 그래프 최적화를 계산했고, 양자컴퓨터의 계산 결과와 데이터분석 프로그램 일체를 공개했다. 연구를 주도한 안재욱 교수는 “이번 연구를 통해 100큐비트급 양자컴퓨터를 활용한 난제 계산 결과 및 계산 프로그램을 모두 공개하여 그동안 양자컴퓨터에 접근이 어려웠던 연구자를 비롯한 많은 사람이 양자 컴퓨팅 연구에 참여할 수 있을 것으로 기대된다. 아울러, 고성능 양자컴퓨터 개발에 필요한 잡음 분석에도 연구팀이 계산한 데이터베이스가 활용될 수 있을 것이라 생각한다”고 말했다. 우리 대학 물리학과 김강흔, 박주영, 변우정 석박사통합과정, 김민혁 박사(現 고려대 물리학과 교수)가 참여한 해당 연구 결과는 국제 학술지 네이처(Nature) 자매지인 ‘사이언티픽 데이터(Scientific data)’1월 11권에 게재됐다. (논문명: Quantum computing dataset of maximum independent set problem on king lattice of over hundred Rydberg atoms). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.02.13
조회수 3096
양자 시뮬레이터로 양자얽힘 관측 도전
고온 초전도물질은 수십 년이 지난 지금도 어떠한 물리적인 기작으로 초전도가 형성되는지 명확하게 규명되지 않았다. 광격자 양자 시뮬레이터는 이러한 문제를 풀기 위한 새로운 접근 방식으로 이미 고전 컴퓨터가 연산할 수 없는 영역에 우위를 보여주었으며, 최근 고온 초전도체에서 관측된 반강자성을 관측하는 등 미래에 고온 초전도 문제를 풀 수 있는 강력한 후보다. 우리 대학 물리학과 최재윤 교수 연구팀이 포항공대 조길영 교수 연구팀과 공동연구를 통해 중성원자 양자 시뮬레이터의 오류 정정 기술을 개발해 최초로 2차원에서의 비국소 질서 변수를 측정함으로써 향후위상 물질과 고온 초전도체 물질 특성을 알아낼 수 있도록 하는 데 성공했다고 29일 밝혔다. 이러한 양자 시뮬레이터의 큰 단점은 관측 과정 및 양자 상태 준비 과정에서 발생하는 결함으로(예: 원자 손실), 이를 체계적으로 파악하고, 정정하는 것이 매우 어렵다. 이러한 결함은 특히 위상물질의 특성을 규정짓는 비국소 질서변수를 측정하는데 큰 걸림돌이 되며, 2차원에서는 그 효과가 더욱 커져 큰 시스템에서 비국소 질서 변수의 실험적 관측을 어렵게 만드는 주요 요소다. 일반적으로 우리가 관측하는 물리량은 국소성을 띄기 때문에, 이러한 양자역학적 특이성인 양자 얽힘(entanglement)이 물성을 지배하는 물질인 위상물질의 비국소 질서 변수를 측정하는 것은 간단하지 않다. 더욱이 2차원, 3차원 물질의 경우 실험적 노이즈에 의해 그 신호가 급격하게 약해지기 때문에 이를 실험적으로 관측하기는 매우 어렵다. 최 교수 연구팀은 양자 시뮬레이터에 비국소 질서 변수가 측정 가능하고 실험적인 결함도 함께 찾아내는 방법을 개발했다. 또한 연구팀은 2차원에서도 양자얽힘의 위상 물질의 물성을 규정짓는 것도 가능함을 보여주었다. 시뮬레이터 실시과정에서 발생한 결점까지 제거하는데 성공한 이후, 위상물질의 2차원 비국소 질서변수는 급격하게(100배 이상) 증가하는 양상을 보였으며, 원자 수에 무관하게 측정값이 일정하게 유지되는 것을 확인하는 등 이론적으로 예측된 경향을 모두 확인할 수 있었다. 해당 기술은 여러 가지 중성원자 양자 시뮬레이터에 활용이 가능하다. 원거리 상호작용이 주요한 양자 시뮬레이터의 경우, 양자 스핀 액상과 같은 2차원 위상 물질의 물성을 규정하는데 적용 가능하며, 고온 초전도체 물질을 흉내 내는 양자 시뮬레이터에도 해당 기법을 응용할 수 있을 것으로 기대된다. 최재윤 교수는 “이번 연구는 중성원자 양자 시뮬레이터에 존재하는 실험적 결함을 보정하는 것이 가능함을 보여준 최초의 연구이며, 향후 위상 양자 연산에 이용되는 양자 스핀 액상과 같은 고차원 위상 물질 발견 및 물성 규정에 주요하게 활용될 것”이라고 하였다. 우리 대학 허준혁 연구원과 포스텍 이원준 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `피지컬 리뷰 X (Physical Review X)' 14권 1호에 지난 1월 8일 출판됐다. (논문명 : Measuring nonlocal brane order with error-corrected quantum gas microscopes). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.01.29
조회수 3311
음악 본능을 인공지능으로 밝혀내다
음악은 세계 공통어로 불릴만큼 문화적 보편 요소로 알려졌다. 그렇다면 어떻게 다양한 문화권의 환경 차이에도 불구하고, ‘음악적 본능’은 어느 정도 공유될 수 있는 것일까? 우리 대학 물리학과 정하웅 교수 연구팀이 인공신경망 모델을 활용해, 사람 뇌에서 특별한 학습 없이도 음악 본능이 나타날 수 있는 원리를 규명했다고 16일 밝혔다. 기존 학자들은 다양한 문화권에 존재하는 음악의 보편성과 차별성을 규명하고, 어떻게 이런 공통성이 나타날 수 있는지에 대해 이해하고자 시도해 왔다. 2019년 세계적인 과학 저널 ‘사이언스’에 게재된 연구를 통해 민족지학적으로 구분된 모든 문화에서 음악을 만들어 내고, 유사한 형태의 박자와 멜로디가 사용된다는 것이 발견됐다. 또한, 신경과학자들은 우리 뇌의 청각 피질(Auditory cortex)에 음악 정보처리를 담당하는 특정한 영역이 존재한다는 것을 밝혀냈다. 연구팀은 인공신경망을 사용해, 음악에 대한 학습 없이도 자연에 대한 소리 정보 학습을 통해 음악 인지 기능이 자발적으로 형성됨을 보였다. (그림2) 연구팀은 구글에서 제공하는 대규모 소리 데이터(AudioSet)를 활용해, 인공신경망이 이러한 다양한 소리 데이터를 인식하도록 학습했다. 흥미롭게도, 연구팀은 네트워크 모델 내에 음악에 선택적으로 반응하는 뉴런(신경계의 단위)이 발생함을 발견했다. 즉, 사람의 말(speech), 동물 소리, 환경 소리, 기계 소리 등의 다양한 소리에는 거의 반응을 보이지 않으나 기악이나 성악 등 다양한 음악에 대해서는 높은 반응을 보이는 뉴런들이 자발적으로 형성된 것이다. 이 인공신경망 뉴런들은 실제 뇌의 음악정보처리 영역의 뉴런들과 유사한 반응 성질을 보였다. 예를 들어, 인공 뉴런은 음악을 시간적으로 잘게 나누어 재배열한 소리에 대해 감소된 반응을 보였다. 이는 자발적으로 나타난 음악 선택성 뉴런들이 음악의 시간적 구조를 부호화하고 있음을 의미한다. 이러한 성질은 특정 장르의 음악에만 국한된 것이 아니라, 클래식, 팝, 락, 재즈, 전자음악 등 25개에 달하는 다양한 장르 각각에 대해서도 공통적으로 나타났다. 심지어, 네트워크에서 음악 선택성 뉴런의 활동을 억제하게 되면, 다른 자연 소리에 대한 인식 정확도를 크게 떨어뜨릴 수 있음을 보였다. 즉, 음악 정보처리 기능이 다른 자연 소리 정보처리에 도움을 주며, 따라서 ‘음악성’이란 자연 소리를 처리하기 위한 진화적 적응에 의해 형성되는 본능일 수 있다는 설명이다. 연구를 주도한 정하웅 교수는 “이러한 결과는 다양한 문화권에서 음악 정보처리의 공통된 기저를 형성하는데, 자연 소리 정보처리를 위한 진화적 압력이 기여했을 수 있음을 시사한다”며, “사람과 유사한 음악성을 인공적으로 구현하여, 음악 생성 AI, 음악 치료, 음악 인지 연구 등에 원천 모델로 활용될 수 있을 것으로 기대한다”고 연구의 의의를 설명했다. 그러나 “현 연구는 음악 학습에 의한 발달 과정을 고려하고 있지 않으며, 발달 초기의 기초적인 음악 정보처리에 대한 논의임을 주의해야 한다”고 연구의 한계를 덧붙였다. 우리 대학 물리학과 김광수 박사(現 MIT 뇌인지과학과)가 제1 저자로, 김동겸 박사(現 IBS)와 함께 진행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 출판됐다. (논문명: ‘Spontaneous emergence of rudimentary music detectors in deep neural networks’, 국문 번역: ‘심층신경망에서 음악 인지기능의 자발적 발생’) 한편 이번 연구는 한국연구재단의 지원을 통해 수행됐다.
2024.01.16
조회수 3164
인공지능 결합한 홀로그래픽 현미경 기술 총망라
의생명공학 연구에 일반적으로 사용되는 현미경 기술들은 염색이나 유전자 조작을 해야만 관찰할 수 있다는 한계가 있다. 하지만 염색이 된 세포들은 치료 목적으로 활용할 수 없어 세포나 조직을 살아있는 상태 그대로 관찰할 수 있는 홀로그래픽 현미경과 이를 체계적으로 분석할 수 있는 인공지능을 결합한 의생명공학 연구의 활용 방안 및 문제점에 대한 분석이 필요하다. 우리 대학 물리학과 박용근 교수 연구팀이 국제 학술지 `네이처 메소드(Nature Methods)'에 홀로그래픽 현미경과 인공지능 융합 연구 방법론을 조망한 견해 (perspective)를 게재했다고 14일 전했다. 연구팀은 기존 현미경 기술 대비 홀로그래픽 현미경의 이미지 복원 기술이 시간을 많이 필요하고 전처리 없이 세포나 조직을 찍을 수 있다는 장점이 있지만, 대신에 그만큼 결과물 분석에 많은 시간과 노력을 들여야 한다고도 분석했다. 박용근 교수 연구팀은 이런 문제점을 홀로그래픽 현미경과 인공지능과의 통합을 통해 해결할 수 있다는 방법론을 제시했다. 지난 수년간, 홀로그래픽 현미경과 인공지능을 결합해 의생명공학 연구에 혁신을 일으킨 내용들이 잇달아 국제 학술지에 발표됐다. 인공지능을 통해 홀로그래픽 이미지를 복원하고, 세포의 종류와 상태를 구분하고, 염색 없이 측정된 결과물에 가상으로 염색 정보를 재생산 해내는 등의 연구를 통해 연구팀은 기존의 홀로그래픽 현미경 기술의 효율을 극대화했다. 홀로그래픽 현미경 기술 소개에 더불어 인공지능의 결합이 광범위한 의생명공학 연구에 활용돼 온 내용을 총망라한 이번 리뷰 논문은 제시된 방법론의 혁신성을 인정받아 생명과학 분야의 권위 학술지인 `네이처 메소드(Nature Methods)'에 지난 10월 24일 자 출판됐다. (논문명: Artificial intelligence-enabled Quantitative Phase Imaging Methods for Life Sciences) 제1 저자인 물리학과 박주연 학생은 "홀로그래픽 현미경에 인공지능을 결합하면, 의생명공학 연구의 효율을 기하급수적으로 높일 수 있다ˮ며, "이번 리뷰 논문을 통해 이 융합 기술이 더욱 활발하게 개발됨과 동시에 더욱 다양한 의생명공학 연구에 활용될 것ˮ이라고 기대했다. 한편 이번 논문은 캘리포니아대학교 로스앤젤레스(UCLA) 아이도간 오즈칸(Aydogan Ozcan) 교수팀, 토모큐브(Tomocube) 인공지능 연구팀과 공동 집필했으며, 연구재단의 리더연구사업, 과학기술정보통신부의 홀로그램핵심기술지원사업, 나노 및 소재 기술개발사업의 지원을 받아 수행됐다.
2023.11.14
조회수 4496
손상된 양자얽힘을 되돌리는 기술 개발 성공
현시대 컴퓨터로는 풀기 어려운 문제를 해결하려는 기술이나 고전적으로는 도달할 수 없는 높은 정밀도의 구현, 그리고 원천적으로 해킹이 불가능한 통신 기술들의 공통점은 바로 양자정보 기술을 활용한다는 것이다. 현재 많은 관심을 받고 있는 양자정보 기술의 대부분은 양자얽힘이라는 양자적 특성을 기반으로 한다. 우리 대학 물리학과 라영식 교수 연구팀이 약한 양자측정을 양자얽힘 검증에 도입해 양자얽힘의 직접적 검증을 진행하고, 이 과정에서 손상된 양자얽힘을 되돌림 측정을 이용해 양자얽힘을 원래대로 되돌리는 기술 개발에 성공했다고 10일 밝혔다. 양자얽힘은 고전 물리로 설명될 수 없는 양자 물리의 고유한 특성으로서 서로 멀리 떨어져 있는 두 입자 중 한쪽의 상태가 결정되는 순간 다른 쪽의 상태가 결정되는 독특한 현상을 나타낸다. 양자얽힘의 존재는 양자측정을 사용하여 검증해야 하지만, 이러한 측정 과정 자체가 양자얽힘을 파괴하는 문제가 있어 검증이 완료된 양자얽힘 상태를 차후 양자기술에 활용하는데 어려움이 있었다. 하지만, 연구팀은 이러한 문제를 해결하기 위해 양자얽힘을 완전히 파괴시키지 않는 ‘약한 양자측정’을 도입하여 양자얽힘을 검증하였고, 이 과정에서 손상된 양자얽힘을 ‘되돌림 측정’을 이용해 원상태로 되돌리는 기술을 개발하였다. ‘약한 양자측정’이란 양자상태를 측정할 때 양자상태에 가해지는 변화를 줄이면서도 필요한 정보를 얻어낼 수 있는 양자측정 기술이다. 약한 양자 측정을 양자얽힘 검증에 도입할 경우, 양자얽힘을 완전히 파괴하지 않고도 양자얽힘이 존재하는지 확인할 수 있다. 약한 양자측정 이후 양자상태에 남아 있는 양자얽힘의 양은 원래의 양보다는 적다. 연구진은 ‘되돌림 측정’을 도입해 줄어든 양자얽힘을 원래대로 되돌릴 수 있음을 보였다. 약한 양자측정의 역과정에 해당하는 되돌림 측정은 손상된 양자상태를 일정 확률로 원래대로 되돌려 양자얽힘을 원상태로 복구할 수 있다. 이러한 복구 과정은 앞서 시행한 양자얽힘 검증과 상호 교환 관계가 있어, 연구팀은 두 값을 적절히 조정할 시 양자얽힘의 존재를 검증함과 동시에 되돌려진 양자얽힘을 다시 활용할 수 있음을 보였다.ᅠ 라영식 교수는 "이번 연구를 활용하여 검증된 양자상태를 양자 암호 키 분배, 양자 원격 전송과 같은 다양한 양자 기술 분야에 적용할 수 있을 것ˮ이라고 연구의 의의를 설명했다. 물리학과 김현진 석박사통합과정 학생이 제1 저자로 참여하고 정지혁, 이경준 석박사통합과정 학생이 공동 저자로 참여한 이번 연구는 저명 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 2023년 10월 온라인판으로 정식 출판됐다. (논문명: Recovering quantum entanglement after its certification) 한편 이번 연구는 정보통신기획평가원 (양자인터넷 핵심원천기술 사업, 대학ICT연구센터지원사업)과 한국연구재단 (양자컴퓨팅 기술개발사업, 중견연구자지원사업)의 지원을 받아 수행됐다.
2023.10.12
조회수 3764
마스크 하나로 선명한 3D 홀로그래픽 센서 구현
일반카메라에 비해 홀로그래픽 카메라는 물체의 3D 정보를 획득하는 능력 덕분에 현실감 있는 영상을 제공한다. 하지만 기존 홀로그래픽 카메라 기술은 광파(光波)의 간섭 현상을 이용하여 빛의 파장·굴절률 등을 측정하는 장치인 간섭계를 사용하여 복잡하고 주변 환경에 민감한 단점이 있다. 우리 대학 물리학과 박용근 교수 연구팀이 3차원 홀로그래피 이미징 센서 기술의 새로운 도약을 이뤘다고 23일 발표했다. 연구팀은 복잡한 간섭계를 사용하지 않는 혁신적인 홀로그래피 카메라 기술을 발표했다. 이 기술은 마스크를 이용해 빛의 위상 정보를 정밀하게 측정하며, 이에 따라 물체의 3D 정보를 더욱 정확하게 재구성할 수 있다. 연구팀은 제시한 혁신적인 방법은 수학적으로 특정 조건을 만족하는 마스크를 일반 카메라에 추가하고, 이를 통해 측정한 레이저 산란광을 컴퓨터 상에서 분석하는 방식이다. 복잡한 간섭계가 필요하지 않고, 더욱 단순화된 광학 시스템을 통해 빛의 위상 정보를 효과적으로 획득한다. 이 기술에서는 물체 뒤 위치한 두 렌즈 사이의 특별한 마스크가 중요한 역할을 한다. 이 마스크는 빛의 특정 부분을 선별적으로 필터링하며, 렌즈를 통과하는 빛의 강도는 일반적인 상업용 카메라로 측정될 수 있다. 이 기술은 카메라로부터 받아온 이미지 데이터와 마스크의 독특한 패턴을 결합해, 알고리즘 처리를 통해 물체의 세밀한 3D 정보를 복원한다. 이러한 방식은 어떤 위치의 물체든 선명하게 3차원으로 촬영하는 능력을 갖추고 있다. 실제 구현을 위해서는, 일반적인 이미지 센서에 단순한 디자인의 마스크를 추가하는 것으로 레이저 홀로그래피 3D 이미지 센서 구현이 가능하다. 이에 따라 광학 시스템의 설계와 제작이 더욱 간편해진다. 특히 이 새로운 기술은 빠른 움직임의 물체에도 선명한 홀로그래픽 이미지 촬영이 가능해 활용 범위가 넓어질 것으로 예상된다. 물리학과 오정훈 박사가 제1 저자로 참여한 이 연구 결과는 국제적인 학술지 '네이처 커뮤니케이션즈 (Nature Communications)' 8월 12일 字에 출판됐다. (논문명: Non-interferometric stand-alone single-shot holographic camera using reciprocal diffractive imaging) 제1 저자인 물리학과 오정훈 박사는 “제안하는 홀로그래픽 카메라의 모듈은 일반 카메라에 필터를 추가하는 방식으로 구현될 수 있으므로, 실용화된다면 일상생활에서 비전문가가 손쉽게 사용할 수 있을 것이다”라며, “특히 기존의 원격 감지 기술들을 대체할 수 있다는 높은 잠재력을 가지고 있다”라고 말했다. 한편 이번 연구는 연구재단의 리더연구사업, 과학기술정보통신부의 홀로그램핵심기술지원사업, 나노 및 소재 기술개발사업의 지원을 받아 수행됐다.
2023.08.23
조회수 3826
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9