-
최경철 교수, 머리카락보다 얇은 실에 OLED 제작 성공
〈 권 선 일 박사과정 〉
우리 대학 전기및전자공학부 최경철 교수 연구팀이 머리카락보다 얇은 섬유 위에 고효율의 유기발광 디스플레이(OLED)를 제작할 수 있는 기술을 개발했다.
연구팀은 향후 웨어러블 디스플레이에 적용할 수 있는 고효율, 고수명의 OLED 기술이 될 것으로 기대된다고 밝혔다.
권선일 박사과정이 주도한 이번 연구는 나노과학 분야 국제 학술지 ‘나노 레터스(Nano Letters)’ 12월 6일자 온라인 판에 게재됐다.
기존의 섬유형 웨어러블 디스플레이 연구는 기기를 구현하는 데 초점을 맞춰서 진행이 됐다. 따라서 소자의 성능이나 내구성 측면에서 평판 기반의 OLED 소자에 비해 턱없이 낮은 성능을 보였고 이로 인해 실제 웨어러블 디스플레이로 응용하는 데 한계가 있었다.
연구팀은 문제 해결을 위해 섬유에 적합한 OLED 소자 구조를 설계해 3차원 섬유 구조에 적합한 딥 코팅 공정을 활용했고 이를 통해 평판 제작물에 버금가는 고효율, 고수명의 OLED를 개발했다.
이 기술을 통해 평판 기반의 용액 공정을 활용한 OLED 구조를 그대로 섬유에 적용해도 성능 저하가 전혀 없이 1만cd/m2(칸델라/제곱미터) 수준의 휘도, 11cd/A(칸델라/암페어) 이상의 효율을 보임을 확인했다.
또한 4.3%의 기계적 변형률에도 섬유형 OLED 성능이 잘 유지됨을 확인했고 개발한 섬유형 OLED를 직물에 직조해도 아무런 문제가 발생하지 않음을 증명했다.
연구진이 개발한 기술은 300마이크로미터(㎛) 직경의 섬유에서부터 머리카락보다 얇은 90마이크로미터 직경 섬유에도 OLED를 형성할 수 있었다. 또한 105℃ 이하의 저온에서 모든 과정이 진행되기 때문에 열에 약한 일반적인 섬유에도 적용 가능하다.
최 교수는 “기존 섬유형 웨어러블 디스플레이 연구는 낮은 성능으로 인해 응용에 많은 제약이 따랐지만 이 기술은 직물을 구성하는 요소인 섬유에 고성능의 OLED를 제조할 수 있는 기술이다”며 “간단하고 저비용의 공정으로 고성능 섬유형 웨어러블 디스플레이 상용화의 길을 열었다”고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 선도연구센터지원사업과 나노소재원천기술개발사업의 지원으로 수행됐다.
□ 그림 설명
그림1. 섬유형 유기 발광 다이오드를 직조하여 구동한 모습
2018.01.03
조회수 14638
-
힘세고 오래가는 리튬이온 배터리 개발
최장욱 교수
- 출력 향상으로 전기자동차 가속성능 획기적 향상 기대 -- 결정면 제어해 출력은 5배 이상, 수명은 3배, 고온 수명은 10배 이상 향상 -
나노기술을 이용해 고출력은 물론 수명이 훨씬 길어진 리튬이온 이차전지가 개발됐다.
우리 학교 EEWS 대학원 최장욱 교수 연구팀이 기존의 리튬이온 이차전지보다 출력은 5배 이상 높으면서도 수명은 3배 이상 길어진 리튬이온 이차전지 양극소재를 개발하는 데 성공했다.
그동안 배터리 성능이 모터의 출력을 따라가지 못해 내연기관 보다 가속 시 굼뜨는 단점이 있었던 기존 전기자동차에 이 배터리를 적용할 경우 가속성능이 획기적으로 개선될 것으로 관련업계는 기대하고 있다.
이와 함께, 차세대 지능형 전력망인 스마트 그리드와 전동 공구 등 고출력 배터리를 필요로 하는 분야에도 다양하게 활용될 수 있을 것으로 전망된다.
현재 가장 널리 상용화된 리튬이온 이차전지용 리튬-코발트계 양극소재는 비싼 가격, 강한 독성, 짧은 수명, 긴 충·방전 시간 등의 단점이 있다. 또 충·방전 시 발생하는 열에 취약, 대용량 전류밀도를 요구하는 전기자동차엔 적용이 어려웠다.
반면, 최장욱 교수 연구팀이 이번에 연구한 리튬-망간계 양극소재는 풍부한 원료, 저렴한 가격, 친환경성 등과 같은 장점을 갖고 있으며, 특히 고온 안정성이 뛰어나고, 높은 출력을 낼 수 있기 때문에 전기자동차용 전극 소재로 각광을 받고 있다.
순수 리튬망간계 양극소재는 수명이 평균 1~2년 정도에 불과할 정도로 매우 짧은 단점이 지적돼 왔다. 이는 망간이 전해액으로 녹아나오는 용출 현상에 기인하며, 이를 해결하기 위해 다양한 연구가 진행돼 왔지만 소재의 고유 결정구조로 인해 난제로 남아 있었다.
최 교수 연구팀은 망간산화물이 만들어지기 직전 나노소재를 합성하는 단계에서 반응온도를 조절해 결정면의 구조를 분석한 결과 220℃에서 망간이온의 용출이 억제되는 결정면과 리튬이온 이동을 원활하게 하는 면이 동시에 존재한다는 것을 발견했다.
각각의 결정면은 수명과 출력을 동시에 좋게 해 출력은 5배 이상 향상되면서 수명은 3배 이상 높아졌다. 게다가 기존에 가장 취약하다고 알려진 고온 수명 특성은 10배 이상 좋아지는 것을 확인했다.
최장욱 교수는 “배터리에 10 마이크로미터 수준의 덩어리 입자로 존재했던 리튬망간계 양극소재를 수백 나노 수준에서 결정면을 제어함으로써 출력과 수명을 모두 획기적으로 개선했다”며 “관련 기술에 대해 국내외 특허 출원을 완료했으며, 앞으로 기업과 연계해 2~3년 내 상용화할 계획”이라고 밝혔다.
이차전지의 세계적인 석학인 스탠포드 대학 추이 교수는 “이번 연구는 나노기술이 이차전지 분야를 획기적으로 발전시킬 수 있는 단적인 예를 보여준 사례”라고 평가했다.
한편, 최장욱 교수가 주도하고 김주성 연구원이 참여한 이번 연구 성과는 나노과학분야 세계적 권위지 ‘나노 레터스(Nano letters’)지 온라인판(11월 27일자)에 발표됐다.
그림1. 잘린 면을 갖는 스피넬 리튬망간산화물의 주사전자현미경 사진(좌)과 이 구조가 다른 구조에 비해 다른 구조와 비교 시 더 우수한 출력 특성을 보여 주는 배터리 데이터(우). 초록색이 잘린 면을 갖는 구조의 데이터이다.
그림2. 결정면 제어를 한 스피넬 리튬망간산화물의 개략도. 파란색 면 방향은 수명특성에 기여하며, 분홍색의 면은 출력 특성에 기여하도록 결정면이 디자인됐다.
2012.11.27
조회수 14783
-
나노촉매의 활성도를 효과적으로 높일 수 있는 원리 규명
박정영 교수
- Nano Letters 발표,“활성도는 높이고 소모는 줄이는 신개념 촉매물질 개발 가능”-
나노촉매*에 산화막을 형성하여 활성도를 자유자재로 제어할 수 있는 기술이 국내 연구진에 의해 개발됨에 따라, 활성도를 극대화하고 소모를 최소화하는 새로운 촉매물질 개발에 가능성이 열렸다.
* 나노촉매(Nanocatalysts) : 표면적이 높은 산화물 지지체에 나노미터(10억분의 1미터) 크기의 금속입자가 분산되어 있는 구조로, 표면에서 기체 반응을 원활하게 하는 재료
우리 학교 EEWS대학원 박정영 교수(42세)가 주도하고 캄란 카디르 박사과정생(Kamran Qadir, 제1저자), 울산과기대 주상훈 교수, 한양대 문봉진 교수 및 UC버클리대 가보 소모자이 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구)과 WCU육성사업 및 지식경제부 둥의 지원으로 수행되었고, 나노분야의 권위 있는 학술지인 ‘Nano Letters’ 온라인 속보(10월 15일)에 게재되었다.(논문명: Intrinsic Relation between Catalytic Activity of CO Oxidation on Ru Nanoparticles and Ru Oxides Uncovered with Ambient Pressure XPS)
우리가 일상생활에서 사용하고 있는 제품의 대부분(80% 이상)은 촉매를 이용해 만들어질 정도로, 촉매는 우리 생활에서 꼭 필요하고 중요한 물질이다.
특히 전 세계 연구자들은 인류가 직면한 중요 이슈인 에너지문제와 환경문제 등을 근본적으로 해결하기 위해 친환경적인 화학공정에 사용될 새로운 나노촉매 물질을 집중적으로 개발하고 있다.
현재 실생활에서 주로 사용되는 촉매는 나노입자와 산화물로 이루어져 있다. 그 중 나노입자는 촉매의 표면적을 최대한 넓혀 촉매의 활성도를 높이는 역할을 한다.
활성도가 높은 촉매를 효과적으로 제조하기 위해서는 나노입자의 표면 산화막이 중요한 요인으로 알려져 왔다. 그러나 이를 과학적으로 입증하기 위해서는 촉매가 반응하는 환경에서 나노입자의 산화상태를 정확히 측정해야 하지만, 그 동안 많은 분석이 진공에서 이루어져와서 이를 정확히 보여주기가 힘들었다. 즉 촉매가 반응하는 환경에서 측정이 이루어지기 위해서는 상압측정이 필요하다. 최근에 개발된 상압 엑스선 광전자 분광법으로 이러한 상압에서 표면의 성분과 산화상태의 연구가 가능하게 되었다.
지금까지 연구자들이 무엇 때문에 정확히 측정하지 못했을까요?
박정영 교수 연구팀은 상압 엑스선 광전자 분광법*으로 나노입자의 산화상태를 촉매환경에서 측정하는데 성공하였다.
* 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy) : 엑스선을 물질에 쬐었을 때 나오는 광전자의 운동에너지를 조사하여 물질의 성분과 산화상태 등을 연구하는 표면분석법
박 교수팀은 2.8나노미터와 6나노미터 크기의 루테늄 나노입자 2개를 콜로이드 합성법*으로 제작하고, 랭뮤르 블라짓 기법**으로 나노입자 한 층을 표면에 증착시켰다. 연구팀은 나노입자의 산화상태를 온도와 압력을 바꿔가며 측정하였고, 크기가 큰 루테늄 나노입자가 얇은 산화막을 가진다는 결과를 도출하였다.
* 콜로이드 합성법 : 금속염과 안정제가 함께 용해되어 있는 용매에 환원제를 투입 또는 혼합하여 나노입자를 제작하는 방법. 제작 과정의 여러 인자를 바꿈으로써 입자의 크기와 모양, 성분의 제어가 가능하다.
* * 랭뮤르 블라짓(Langmuir-Blodgett) 기법 : 금속나노입자를 단층으로 제작하는 기법. 나노입자가 용액 위에 떠 있을때, 표면압력을 조절하여 나노입자 사이의 평균 간격을 조절할 수 있다.
또한 연구팀은 측정결과를 바탕으로 산화상태가 촉매의 활성도에 미치는 영향을 확인하여, 크기가 큰 루테늄 나노입자의 얇은 산화막이 촉매의 활성도를 높일 수 있고, 산화상태를 바꾸면 활성도도 제어할 수 있다는 사실을 입증하였다.
박정영 교수는 “나노입자의 산화막이 촉매환경에서 만들어지고 촉매활성도에도 직접적인 관계가 있음을 규명한 이번 연구는 활성도가 높은 촉매물질을 만드는데 응용되어 환경오염에 주요한 원인이 될 수 있는 촉매물질의 소모를 획기적으로 줄이는데 기여할 것으로 기대한다”고 연구의의를 밝혔다.
루테늄(Ru) 나노입자의 촉매환경 도중 산화상태조사 : 루테늄 나노입자에서 일어나는 촉매반응 (일산화탄소 산화반응)을 보여줌 (왼쪽). 방사광 가속기에 설치된 상압 엑스선 광전자 분광법을 이용하여 촉매환경에서 루테늄 나노입자의 산화상태가 분석이 됨 (아래). 루테늄 나노입자의 산화막의 두께가 나노입자의 크기에 관계가 되고 이는 촉매의 활성도에 직접적으로 영향을 줌 (오른쪽)
2012.11.08
조회수 18376
-
꿈의 신소재 ‘그래핀’ 활용한 차세대 메모리 소자 개발
[그림] 기존 실리콘 기반 전하포획방식 플래쉬 메모리 소자에 그래핀 전극이 도입된 모식도
- Nano Letters지 발표,“기존 생산라인을 그대로 이용하여 바로 양산할 수 있는 차세대 플래시 메모리 소자”-
금속 전극을 그래핀*으로 대체하면 기존의 플래시 메모리** 소자의 성능과 신뢰도가 획기적으로 개선된다는 사실이 국내 연구진에 의해 규명되었다.
조병진 교수(한국과학기술원)가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 중견연구자지원사업(도약연구)과 미래기반기술개발사업의 지원으로 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nano Letters"지에 온라인 속보(11월 22일)로 게재되었다.
(논문명 : Graphene Gate Electrode for MOS Structure-based Electronic Devices)
특히, 이번 연구성과는 그래핀이 먼 미래의 반도체 소자가 아닌 현재 양산 중인 반도체 소자에도 바로 활용할 수 있는 소재인 점을 증명한 첫 사례라는 점에서 그 의미가 크다.
* 그래핀(Graphene) : 흑연의 표면층을 한 겹만 떼어낸 탄소나노물질로, 높은 전도성과 전하 이동도를 갖고 있어 향후 응용 가능성이 높아 꿈의 신소재로 불림
** 플래시 메모리(Flash Memory) : 전원이 공급되지 않아도 저장된 정보를 계속 유지하는 컴퓨터 기억장치의 일종으로, 스마트폰, 노트북, 디지털 카메라 등 전자장치에 폭넓게 사용됨
조병진 교수 연구팀은 기존의 실리콘 기반의 반도체 소자(전계효과 트랜지스터*)에서 금속 게이트 전극을 그래핀 전극으로 대체하면, 미래의 반도체 시장에서 요구하는 성능과 신뢰도를 확보할 수 있다는 사실을 밝혀냈다. 이 기술은 기존의 반도체 제조 공정에서 크게 바뀌는 부분이 없어서 머지않아 양산에 적용할 수 있다.
* 전계효과 트랜지스터(field effect transistor) : 전압(게이트 전압)으로 전류(드레인 전류)를 제어하는 형식의 가장 일반적이고 광범위하게 쓰이고 있는 반도체 소자
최근 그래핀의 우수한 전기적 특성을 활용하여 초고속 반도체, 신개념 로직 반도체* 등을 구현하기 위해 전 세계적으로 활발히 연구되고 있지만, 10~20년 후에나 상용화될 수 있는 기초․원천연구가 대부분이다.
※ 로직(Logic) 반도체 : 기억 기능을 하는 메모리 반도체와는 달리 데이터를 연산․처리하는 반도체
또한 지금까지 그래핀을 현재 세계 반도체 시장의 핵심 주류인 실리콘 기반 전자소자의 한 부분으로서 적용한 적은 없었다.
현재 국내외 기업에서는 20나노미터* 이하 급에서 사용될 것으로 예상되는 전하포획방식**의 플래시 메모리 소자를 연구 개발 중이다. 하지만 이 방식의 플래시 소자는 데이터 보존 특성이 시장의 요구조건(멀티비트 동작 시 섭씨 150도에서 10년 이상 데이터 보존 등)을 아직 충족시키지 못해 현재까지 대량으로 상용화되지 못하고 있다.
* 나노미터(nano meter) : 10억분의 1미터로, 1나노미터는 대략 성인 머리카락 굵기의 10만분의 1
** 전하포획 플래시(Charge Trap Flash) 메모리 : 전하를 기존의 도체가 아닌 부도체 물질에 저장하는 방식으로, 새로운 반도체 나노공정을 이용해 개발한 비휘발성 메모리
그러나 이번 성과는 현재 국내외 기업들이 집중적으로 연구개발하고 있는 전하포획방식의 플래시 메모리 소자에 그래핀 전극을 사용하면, 데이터 보존 특성이 바로 시판할 수 있는 성능과 신뢰도로 크게 개선(데이터 10% 손실시간 기준으로 기존 소자에 비해 10,000배 개선)될 뿐만 아니라, 데이터 씀과 지움 간의 전압차이가 70%나 개선되는 등 20나노미터이하의 플래시 메모리 소자의 상용화에 가장 큰 기술적 장벽을 극복할 수 있음을 실험으로 증명하였다.
이것은 그래핀이 세상에서 존재할 수 있는 가장 얇은 단원자층 물질이고 신축성과 유연성이 뛰어나, 기존의 금속 전극과는 달리 전극 아래에 위치한 게이트 유전막에 기계적 스트레스를 발생시키지 않기 때문인 것으로 확인되었다. 또한 이번 연구를 통해 그래핀이 갖는 큰 일함수*도 데이터 보존 특성을 향상시킬 수 있는 또 다른 장점으로 파악되었다.
※ 일함수(Work function) : 물질 내에 있는 전자 하나를 밖으로 끌어내는데 필요한 최소의 일(에너지)
조병진 교수는 “이번 연구결과는 새로운 나노기술을 기존의 반도체기술에 융합하여 기존 기술의 한계를 극복한 대표적인 예로서, 그래핀이 먼 미래만의 소재가 아닌 지금 또는 바로 다음 세대 반도체 핵심 소자에 즉시 적용될 수 있음을 보여주는 첫 사례이다. 또한 이번 연구결과를 응용해서 그래핀을 플래시 메모리 소자뿐만 아니라 자동차 전자제어장치, 군사용 및 의료 시스템 등 반도체 소자의 신뢰성이 특별히 중요한 분야에 폭넓게 활용될 수 있을 것으로 기대한다”고 밝혔다.
조병진 교수와 함께 이번 연구에 함께 참여한 연구팀, (뒷줄 왼쪽부터) 신우철 학생, 박종경 학생, 송승민 학생
2011.11.21
조회수 19497
-
박정영 교수, 핫전자 태양전지 원천기술 개발
- Nano Letters 발표, “에너지 손실을 최소화한 핫전자 태양전지 개발 가능성 열어”-
태양광을 흡수하여 생성되는 핫전자 태양전지 원천기술이 국내 연구진에 의해 개발되었다.
우리 학교 EEWS 대학원 박정영 교수(41세, 교신저자, 지속가능한 에너지공학기술사업단 해외학자)가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견연구자지원사업의 지원을 받아 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nano Letters’ 온라인 속보(9월 14일)에 게재되었다. (논문명 : Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes)
박정영 교수팀은 태양광을 흡수하여 생성되는 핫전자와 표면플라즈몬의 상관관계를 규명하였다.
박 교수팀은 금속박막과 산화물 반도체로 이루어진 나노다이오드를 이용해 빛에 의해 표면에 여기된 핫전자를 검출하고, 나노다이오드 금속박막의 표면처리를 통해 수십 나노미터 크기의 나노섬 형태로 변형하였는데, 이러한 나노섬은 표면플라즈몬을 보여준다.
연구팀은 나노다이오드에 검출된 핫전자를 측정하여 표면플라즈몬에 의한 핫전자의 증폭을 관찰하였다. 이는 표면플라즈몬이 핫전자의 생성을 극대화시키고, 이 원리는 태양전지의 효율을 높이는데 활용될 수 있다.
이 연구에는 EEWS 대학원의 이영근 석사과정생 (제 1저자)와 정찬호 박사과정생 (제 2저자) 이 참여하였다.
박정영 교수는 “핫전자를 정확히 이해하고 측정하는 것은 에너지 손실과정을 근본적으로 이해할 수 있도록 도와준다는 점에서 표면과학 및 에너지공학에서 매우 중요하다. 이번 핫전자 원천기술의 개발은 핫전자를 이용한 고효율 에너지 전환소자 개발에 응용이 될 수 있다”고 연구의의를 밝혔다.
<그림>표면플라즈몬에 의해서 증폭된 핫전자의 측정을 위한 나노다이오드의 구조
2011.10.06
조회수 19462
-
숲을 모방한 차세대 태양전지 기술 개발
- 산화아연 나노와이어 이용해 염료감응형 태양전지 효율 3~5배 향상
- 세계적 학술지‘나노 레터스(Nano Letters)’ 1월호 온라인 판 게재
우리나라 태양전지 연구개발 수준이 글로벌 경쟁력을 갖추게 됐다.
우리학교 기계공학과 고승환·성형진 교수팀이 숲을 모방한 산화아연 기능성 나노구조체를 만드는 기술을 개발하고, 이 기술을 염료감응형 태양전지에 적용해 에너지 변환효율을 세계 최고 수준으로 크게 향상시켰다.
염료감응형 태양전지(DSSC: Dye Sensitized Solar Cell)는 주로 산화티타늄(TiO2) 나노입자로 이루어진 무질서한 다공성 구조체를 전극 재료로 이용한다. 이 전극에서 생성된 전자가 다공성 구조체를 지나면서 생기는 정공-전자 재결합으로 인해 에너지 손실이 많았다.
연구팀은 자연계에서 무성한 나뭇가지로 나뭇잎이 햇빛을 효과적으로 흡수할 수 있도록 한 구조에 착안해, 산화아연(ZnO) 나노와이어로 합성된 ‘나노 나무’와 그들의 집합체인 ‘나노 숲’을 구현했다.
이 나노구조체를 이용해 광반응으로 생성된 전자의 손실을 크게 줄여 염료감응형 태양전지의 효율을 3~5배 향상시키는 데 성공했다. 또한, 이 구조는 염료감응형 태양전지에서 산화티타늄 나노다공성 구조체의 효율을 뛰어넘을 수 있다는 가능성도 세계 최초로 제시했다.
고승환 교수는“이번 신물질과 새로운 기능성 나노구조체 개발에 대한 연구로 태양전지 효율을 극대화해 이 분야에서 세계적 수준을 갖추게 됐다”며, “나노구조체가 광센서 디스플레이등의 다양한 전자기기의 성능향상의 연구에도 적용될 수 있을 것으로 기대된다”고 말했다.
한편, 이번 연구는 한국연구재단의 창의적 연구 진흥사업과 신진연구사업 지원을 받아 수행됐으며, 나노과학의 세계적 학술지인 ‘나노 레터스(Nano Letters)’지 1월호 온라인 판에 게재됐다.
2011.01.31
조회수 14286
-
유연한 나노신소재 발전기술 개발
휴대폰이나 심장에 이식한 미세 로봇이 배터리 충전 없이 영구적으로 작동할 수는 없을까?
공상과학 영화에서나 나올 법한 이런 일들이 머지않아 가능할 것으로 보인다.
우리학교 신소재공학과 이건재 교수팀은 압전특성이 우수한 세라믹 박막물질을 이용하여 심장 박동, 혈액 흐름과 같은 미세한 움직임으로도 전기를 만들 수 있는 새로운 형태의 유연한 나노발전기술을 개발했다.
압전특성이란, 가스레인지의 점화스위치 작동원리와 같이, 압력이나 구부러짐의 힘이 가해질 때 전기가 발생되는 특성을 말하는 데, ‘페로브스카이트(perovskite)’ 구조를 가지는 세라믹 물질들이 높은 효율을 나타내지만 깨지기 쉬운 성질을 가지고 있어 유연한 전자 장치로의 활용이 불가능했다.
이 교수팀은 높은 압전특성을 가지면서 깨지지 않고 자유롭게 구부릴 수 있는 세라믹 나노박막물질을 만들어 바이오-환경 친화적인 고효율 나노발전기술 개발에 세계 최초로 성공한 것이다.
나노기술과 압전체가 만나 만들어지는 나노발전기술은 전선과 배터리 없이도 발전이 가능해, 휴대용 전자제품 뿐만 아니라 몸속에 집어넣는 센서나 로봇의 에너지원으로도 사용이 가능하기 때문에, 그 활용영역은 응용기술 여하에 따라 얼마든지 넓어질 수 있을 것으로 보고 있다.
미세한 바람, 진동, 소리와 같이 자연에서 발생되는 에너지원과 심장 박동, 혈액 흐름, 근육 수축·이완과 같이 사람 몸에서 발생되는 생체역학적인 힘을 통해 전기를 생산할 수 있게 됨으로써 꿈의 무공해·무한 에너지원이 될 수 있는 것이다.
이번에 개발한 나노발전기술은 이 교수가 2004년 세계 최초로 공동발명한 ‘고성능 단결정 휘어지는 전자소자’를 토대로, 세라믹 나노박막물질을 유연한 플라스틱 기판 위에 옮겨, 외적인 힘이 주어질 때마다 신소재 압전물질로부터 전기를 얻는 데 성공한 것이 핵심이다. 또한 이 나노발전기술의 회로구조를 변형하면 LED발광도 이루어 질 수 있다고 이 교수는 말했다.
이 연구 결과는 나노과학기술(NT) 분야의 세계적 권위지인 "나노 레터스(Nano Letters)" 11월호 온라인 판에 게재됐고, 국내·외에 특허 출원되었으며, 논문의 공동저자로 참여한 미국 조지아 공대 왕종린(Wang, Zhong Lin) 교수팀과 동물 이식형 나노발전기 생체실험을 후속 연구로 진행하고 있다.
<관련동영상>
외부적인 힘에 의해 나노발전기에서 전기가 발생되는 동영상
http://www.youtube.com/watch?v=sWdopmi0B7U
<그림설명>
구부러지는 유연한 나노박막물질에서 전기가 발생되고 있다.
2010.11.08
조회수 18140
-
김봉수 교수팀, 초탄성 무결점 금속나노선 개발
화학과 김봉수 교수팀은 차세대 3차원 메모리 소자의 대량생산이 가능한 새로운 초탄성․무결점 금속 나노선(nanowire)을 개발했다. 이는 촉매없이 금속 나노선을 기판위에 손쉽게, 원하는 형태로 성장(epitaxial growth)시킬 수 있는 원천기술이다.
교육과학기술부(장관 안병만)는「21세기 프론티어연구개발사업」나노소재기술개발사업단(단장 서상희 박사)의 지원을 받은 KAIST 김봉수 교수 연구팀이 초탄성․무결점의 단결정 금속 나노선을 개발 하는데 성공했다고 18일 밝혔다.
지난 2004년 MIT 선정 10대 유망기술에 선정된 바 있는 나노선(nanowire)은 단면 지름이 수십에서 수 나노미터(1nm = 10억분의 1m) 정도인 극미세선으로, 트랜지스터, 메모리, 센서 등 첨단 전기전자 소자를 개발하는데 핵심적인 미래기술이다.
기존의 반도체 나노선은 정렬된 성장(epitaxial growth)이 가능했으나 금, 팔라듐 등 금속 나노선의 경우에는 적절한 촉매가 없어서 이러한 정렬된 성장을 실현하기 어려웠다.
KAIST 김봉수 교수 연구팀은 증기의 양, 온도, 압력 등을 최적으로 조절함으로써, 촉매 없이 금, 팔라듐, 및 금팔라듐 합금 나노선을 원하는 대로 방향성 있게 성장시키는 데 세계 최초로 성공하였다. 또한, 어떠한 물질이라도 기판 위에 씨앗 결정을 형성하기만 하면 잘 정렬된 나노선으로 성장시킬 수 있다는 사실을 밝혔다.
※ 질병을 일으키는 병원균의 DNA 농도에 따라 금나노선에 부착되는 금입자의 갯수가 달라짐(이 금입자의 갯수로 부터 병원균의 갯수를 검출) (스케일바 : 20 nm)
KAIST 화학과 김봉수 교수는 “이 기술을 한 단계 더 발전시켜 기판 위에 씨앗을 원하는 위치에 놓을 수 있다면, 나노선의 위치 및 방향을 마음대로 제어할 수 있게 되기 때문에, 차세대 3차원 메모리 소자의 대량생산이 가능해져 세계 메모리 산업에서 선도적 위치를 차지할 수 있을 것으로 기대된다.”고 밝혔다.
한편 이번 연구결과는 나노 분야의 세계적 권위지인 나노레터스(Nano Letters)지 1월 6일자 온라인 속보판에 소개되었으며, 현재 미국 및 독일 등에 특허 출원중이다.
[그림 1] 사파이어 기판 위에 수직으로 성장한 완전 단결정 금 나노선
이번에 개발된 기술을 통해 성장된 나노선은 초탄성(超彈性)․무결점 뿐만 아니라 완벽히 깨끗한 표면을 가지고 있다는 특징이 있어, 나노크기의 탄성에너지 저장장치, 나노안테나, 질병진단용 메디컬 센서 등 새로운 기술분야에 다양하게 응용가능하다.
[그림 2] 금 나노선을 이용한 질병진단 센서 (예)
2010.01.18
조회수 21029
-
장기주 교수, 불순물도핑없는 반도체나노선 양전하 생성원인규명
물리학과 장기주(張基柱, 56) 교수팀이 게르마늄-실리콘 나노선에서 불순물 도핑 없이도 양전하가 생성되는 원인을 최근 규명했다. 이 연구는 KAIST 박지상, 류병기 연구원, 연세대 문창연 박사와 함께 나노미터(nm=10억분의 1m)단위의 직경을 가진 코어-쉘(core-shell) 구조의 게르마늄-실리콘 나노선의 전기전도 특성을 조사해 이뤄졌다.
이번 연구결과는 나노과학기술 분야 최고 권위지인 ‘나노 레터스(Nano Letters)" 온라인판에 게르마늄-실리콘 코어-쉘 나노선의 양전하 정공 가스를 일으키는 결함(Defects Responsible for the Hole Gas in Ge/Si Core−Shell Nanowires)라는 제목으로 지난 17일 게재됐다.
반도체 기술이 소형화의 한계에 직면하면서 탄소나노튜브, 그래핀(graphene), 반도체 나노선 등 나노 소재를 이용한 새로운 반도체 소자 연구가 널리 수행되고 있다. 특히 실리콘 및 게르마늄 나노선은 기존 반도체 기술과 접목이 가능하기 때문에 큰 기대를 모으고 있다. 반도체 나노선의 소자 응용은 불순물을 첨가하여 양전하 혹은 음전하를 띤 정공(hole)이나 전자 운반자를 만들어 전류가 흐를 수 있게 해야 한다. 그러나 나노선의 직경이 작아져 나노미터 수준이 되면 불순물 첨가가 어려워 전기전도의 조절이 매우 어려워진다.
이에 반해 게르마늄 나노선을 얇은 실리콘 껍질로 둘러싼 코어-쉘(core-shell) 구조를 갖는 나노선을 만들면 불순물을 도핑하지 않아도 게르마늄 코어에 정공이 만들어지고 전하 이동도는 크게 증가한다. 연구진은 제일원리 전자구조 계산을 통해 게르마늄 코어와 실리콘 쉘의 밴드구조가 어긋나 있고, 이러한 이유로 게르마늄 코어의 전자가 실리콘 쉘에 있는 표면 결함으로 전하 이동이 가능하여 코어에 양공이 생성됨을 최초로 규명했다. 또한 반도체 나노선을 만드는 과정에서 촉매로 쓰이는 금(Au) 원자들이 실리콘 쉘에 남아 게르마늄 코어의 전자를 빼앗는다는 사실도 처음 밝혔다.
張 교수는 “이번 연구 결과는 그동안 수수께끼로 남아있던 게르마늄-실리콘 나노선의 양전하 생성 원인과 산란과정을 거치지 않는 정공의 높은 전하 이동도에 대한 이론적 모델을 확립하고, 이를 토대로 불순물 도핑 없는 나노선의 소자 응용과 개발에 크게 기여할 것으로 기대된다.” 고 말했다.
* 용어설명○ 제일원리 전자구조 계산 : 실험 데이터 없이 순전히 양자이론에 기초하여 물질의 전자구조와 물성을 기술하는 최고급(state-of-the-art) 전자구조 계산방법.
(그림1) 실리콘 나노선 및 게르마늄-실리콘 코어-쉘 나노선의 원자구조.
(그림2) 게르마늄-실리콘 코어-쉘 나노선의 전자의 상태밀도 분포.
2009.12.30
조회수 19136