본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A0%84%EC%82%B0%ED%95%99%EB%B6%80
최신순
조회순
천천히 걸음 속도 높여도 다 아는 인공지능 기술 개발
최근 건강에 관한 관심이 점차 커지면서 일상생활에서 스마트 워치, 스마트 링 등을 통해 자기 신체 변화를 살펴보는 일이 보편화되었다. 그런데 기존 헬스케어 앱에서는 걷기에서 뛰기로 갑자기 변화를 줄 경우는 잘 측정이 되지만 천천히 속도를 높이는 경우는 측정이 안 되는 현상이 발생했다. 우리 연구진이 완만한 변화에도 동작을 정확하게 파악하는 기술을 개발했다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 착용 기기 센서 데이터에서 사용자 상태 변화를 정확하게 검출하는 새로운 인공지능 기술을 개발했다고 12일 밝혔다. 보통 헬스케어 앱에서는 센서 데이터를 통해 사용자의 상태 변화를 탐지하여 현재 동작을 정확히 인식하는 기능이 필수이다. 이를 변화점 탐지라 부르며 다양한 인공지능 기술이 변화점 탐지 품질을 향상하기 위해 적용되고 있다. 이재길 교수팀은 사용자의 상태가 급진적으로 변하거나 점진적으로 변하는지에 관계없이 정확하게 잘 동작하는 변화점 탐지 방법론을 개발했다. 연구팀은 각 시점의 센서 데이터를 인공지능 기술을 통해 벡터*로 표현하였을 때, 이러한 벡터가 시간이 지남에 따라 이동하는 방향을 주목하였다. 같은 동작이 유지될 때는 벡터가 이동하는 방향이 급변하는 경향이 크고, 동작이 바뀔 때는 벡터가 직선상으로 이동하는 경향이 크게 나타났다. *벡터: 사용자의 시점별 상태 특성(이동속도, 자세, 움직임 등)을 나타내는 가장 좋은 수학적 개념 연구팀은 제안한 방법론을 ‘리커브(RECURVE)’라고 명명했다. 리커브(RECURVE)는 양궁 경기에 쓰이는 활의 한 종류이며, 활이 휘어 있는 모습이 데이터의 이동 방향 변화 정도(곡률)로 변화점을 탐지하는 본 방법론의 동작 방식을 잘 나타낸다고 보았다. 이 방법은 변화점 탐지의 기준을 거리에서 곡률이라는 새로운 관점으로 바라본 매우 신선한 방법이라는 평가를 받았다. 연구팀은 변화점 탐지 문제에서 다양한 헬스케어 센서 스트림 데이터를 사용하여 방법론의 우수성을 검증하여 기존 방법론에 비해 최대 12.7% 정확도 향상을 달성했다. 연구팀을 지도한 이재길 교수는 "센서 스트림 데이터 변화점 탐지 분야의 새로운 지평을 열 만한 획기적인 방법이며 실용화 및 기술 이전이 이뤄지면 실시간 데이터 분석 연구 및 디지털 헬스케어 산업에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다. 데이터사이언스대학원을 졸업한 신유주 박사가 제1 저자, 전산학부 박재현 석사과정 학생이 제2 저자로 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2024'에서 올 12월 발표될 예정이다. (논문명 : Exploiting Representation Curvature for Boundary Detection in Time Series) 한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(RS-2020-II200862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다.
2024.11.12
조회수 820
박종세 교수팀, 2024 IISWC 다수 상 동시 석권
우리 대학 전산학부 박종세 교수 연구팀이 지난 9월 15일부터 9월 17일까지 캐나다 밴쿠버에서 열린 ‘2024 IEEE 국제 워크로드 특성화 심포지엄(IEEE International Symposium on Workload Characterization, 이하 IISWC 2024)’에서 최우수 논문상(Best Paper Award)과 최우수 연구 기록물 상(Distinguished Artifact Award)’을 동시에 수상했다고 26일 밝혔다. 박 교수 연구팀은 ‘초거대 언어모델 추론 서비스 제공을 위한 HW/SW 공동 시뮬레이션 인프라(LLMServingSim: A HW/SW Co-Simulation Infrastructure for LLM Inference Serving at Scale)’ 논문으로 두 상을 동시에 수상했다. IISWC는 컴퓨터 시스템 워크로드 특성화 분야에서 권위를 자랑하는 국제 학회이며, 개최시마다 최우수 논문상과 최우수 연구 기록물 상을 하나씩 수여하는데 올해에는 박 교수팀의 논문이 두 상을 모두 단독으로 수상했다. 이번 수상 연구는 대규모 거대언어모델(LLM) 추론 서비스를 위한 하드웨어와 소프트웨어 통합 시뮬레이션 인프라를 최초 개발한 점, 향후 LLM 추론 연구의 지속적인 발전을 위해 오픈소스로 공개한 코드의 완성도와 사용자 편의성 측면에서 높은 평가를 받았다. 이번 연구에서 연구팀은 챗GPT와 같은 LLM 추론 서비스를 실행하는 대규모 시스템을 여러 가지 하드웨어와 소프트웨어를 추가해 시뮬레이션할 수 있는 시뮬레이션 인프라를 제안했다. 이를 통해 GPU(그래픽처리장치), NPU(신경망처리장치)와 PIM(지능형메모리반도체)과 같은 다양한 하드웨어뿐만 아니라 반복 수준 스케쥴링, KV 캐시 페이징과 같은 초거대 언어모델 추론을 위한 소프트웨어적 요소를 모두 함께 시뮬레이션할 수 있었다. 이번 연구는 KAIST 전산학부 박종세 교수팀의 조재홍, 김민수, 최현민, 허구슬 학생들이 주도했다. 상을 받은 KAIST 전산학부 박종세 교수는 “이번 연구를 통해, LLM 클라우드 상에서 다양한 AI 반도체와 시스템 소프트웨어의 성능을 종합적으로 평가해 볼 수 있는 오픈소스 도구(Tool)을 공개할 수 있게 되어 기쁘고, 앞으로도 생성형 AI를 위한 클라우드 시스템 연구를 지속해 나갈 것이다”라고 소감을 전했다. 이번 연구 결과는, 챗GPT와 같이 LLM을 활용하는 단순한 챗봇 AI를 넘어, 생성형 AI(Generative AI)로 대표되는 미래 AI 산업에서 이종 AI 반도체 기반 클라우드 시스템을 구축하는 등 다양한 분야에 활용될 수 있을 것으로 기대된다. 한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 인공지능반도체대학원지원사업, 및 하이퍼엑셀의 지원을 받아 수행됐다.
2024.10.11
조회수 1379
지금 당신의 마음 건강은 어떠한가요?
최근 빠른 고령화 및 출산율 감소 등으로 1인 가구가 급속하게 증가하면서, 1인 가구의 정신건강 문제에 대한 관심도 함께 높아지고 있다. 서울시가 실시한 1인 가구 실태조사에 따르면, 1인 가구의 60% 이상이 외로움을 느끼고 있으며, 특히 사회적 고립과 함께 외로움을 겪는 비율이 상당히 높은 것으로 나타났다. 우리 대학 전산학부 이의진 교수 연구팀이 1인 가구의 정신건강 관리를 위해, 사용자 스스로가 자신의 심리 상태를 기록할 수 있도록 지원하는 상황 인식 기반 멀티모달 스마트 스피커 시스템을 개발했다고 24일 밝혔다. 연구팀은 사용자의 주변 상황을 실시간으로 파악해 최적의 시점에 정신건강 관련 질문하도록 이 시스템을 설계했고 기존의 무작위 설문보다 높은 응답률을 달성하는 것을 확인했다. 기존 스마트 스피커를 활용한 정신건강 자가 추적 연구에서 무작위 설문을 할 경우 사용자의 스트레스, 짜증 등 부정적인 감정이 유발시켜 설문 응답에 편향이 발생할 수 있어 각별한 주의가 필요했다. 이러한 문제 해결을 위해 이의진 교수 연구팀은 스마트 스피커에 멀티 모달 센서를 장착해, 사용자의 주변 상황의 변화를 감지해 스피커가 말 걸기 좋은 시점이 검출되면 정신건강 자가 추적 설문을 능동적으로 요청하는 상황 인식 기반 자가 추적 기술을 개발했다. 스피커는 실내 움직임, 조명, 소음, 이산화탄소 등 다양한 센서 데이터를 종합적으로 분석해 사용자의 존재 및 활동을 감지한 뒤, 사용자가 응답하기 적합한 시점에 자가 추적 설문을 능동적으로 요청함으로써, 설문 응답의 효율성을 극대화했다. 또한, 설문 입력 방식의 경우 최근 출시된 스마트 스피커는 명령뿐만 아니라 터치스크린도 지원하므로 사용자들이 음성 또는 터치 입력 방식을 자유롭게 선택할 수 있도록 해 상호작용의 폭을 넓혔다. 이를 통해 사용자는 상황에 맞는 최적의 인터페이스를 선택해 자가 추적을 쉽게 수행할 수 있도록 했다. 개발된 스피커의 사용자 경험을 평가하기 위해서 연구팀은 1인 가구 20세대에 자가 추적 스마트 스피커를 설치해, 한 달 동안 실증 연구를 수행해서 총 2,201개의 정신건강 설문 응답 데이터셋을 구축했다. 데이터셋 분석을 통해 설문 응답 시간, 활동 맥락에 따른 설문 응답 패턴 및 어떤 상황에서 음성 입력(VUI) 또는 터치 입력(GUI)이 더 선호되는지 파악했다. 특히, 스마트 스피커가 말로 사용자에게 요청을 하다 보니 스피커 근처에서 사용자의 활동을 감지하는 것이 정신건강 설문 응답률에 큰 영향을 미쳤다. 음성 입력의 편의성에도 불구하고 전반적으로 참가자들은 음성 입력보다는 빠른 응답이 가능한 터치 입력을 선호했다. 데이터 분석 결과, 사용자의 주변 상황을 실시간으로 파악해 최적의 시점에 정신건강 관련 질문을 할 경우 응답률이 더 높으며, 어떤 상황에서 음성 또는 터치 인터페이스를 선호하는지도 파악했다. 연구를 주도한 이의진 교수는 “이번에 개발한 스마트 스피커를 앞으로 수용전념치료 기법을 활용한 인간상담사와 같은 기능의 정신건강 관리 지원 스마트 스피커로 발전시키고자 한다. 나아가 실내에서 수집된 일상생활 데이터를 AI 모델로 학습해 사용자 정신건강 상태에 따라 라이프 스타일 패턴을 예측하는 시스템도 개발하여 향후 정신질환 조기 발견과 효율적인 관리를 가능케 할 인공지능 에이전트의 혁신을 이끌 것으로 기대된다” 라고 말했다. 한편 이 연구는 LG전자-KAIST 디지털 헬스케어 연구센터의 지원을 받아 수행됐고 인간 컴퓨터 상호작용(HCI) 분야 국제 최우수 국제학술대회인 미국컴퓨터협회(ACM) 소속 ‘Conference on Human Factors in Computing Systems (CHI)’에서 지난 2024년 5월에 발표됐다. 논문명: Exploring Context-Aware Mental Health Self-Tracking Using Multimodal Smart Speakers in Home Environments
2024.09.24
조회수 1371
딥러닝 대부 요슈아 벤지오 교수와 AI 연구센터 설립
우리 대학 전산학부 안성진 교수 연구팀이 세계적인 인공지능 권위자인 캐나다의 요슈아 벤지오(Yoshua Bengio) 교수와 함께 ‘KAIST-밀라(MILA) 프리프론탈 인공지능 연구센터’를 KAIST에 7월 1일부로 설립했다고 4일 밝혔다. 이 사업은 과학기술정보통신부와 한국연구재단이 지원하는 ‘2024년도 해외우수연구기관 협력허브구축사업’의 일환으로, 안성진 교수 연구팀은 2024년 7월부터 2028년 12월까지 총 27억 원의 지원을 받게 된다. 이 센터는 차세대 인공지능 기술 개발을 위한 국제공동연구의 중심지로서 역할을 하게 될 예정이다. 요슈아 벤지오 교수는 딥러닝 분야의 창시자 중 한 명으로, 현대 인공지능 연구에 지대한 영향을 미친 인물이다. 그의 연구는 현재의 딥러닝 기술을 탄생시키고 발전시키는 데 중요한 역할을 했다. KAIST 안성진 교수팀과의 이번 협력은 요슈아 벤지오 교수의 몬트리올 학습 알고리즘 연구소(MILA, Montreal Institute for Learning Algorithms)와 KAIST의 선도적인 인공지능 연구 역량을 결합해, 차세대 인공지능 기술 발전에 새로운 지평을 열 것으로 기대된다. 이번 연구의 핵심은 인간의 고위인지 능력을 모방하는 ‘시스템2’ AI 기술의 개발이다. 시스템2는 데니얼 카네만의 듀얼프로세스 이론에서 제시된 개념으로, 직관적이고 빠른 인지를 담당하는 ‘시스템1‘과 달리, 수학적 논리 추론 같이 복잡하고 순차적인 사고 과정을 담당하는 기능을 수행한다. 이 과정은 주로 뇌의 전두엽에서 이뤄지며, 계획, 판단, 추론 등 고차원적인 인지 기능을 관리한다. 대형언어모델의 발전에도 불구하고, 현재의 딥러닝 기술은 이러한 고위인지 기능을 효과적으로 구현하는 데 여전히 한계를 보이고 있다. 이번 연구는 이러한 한계를 극복하고, 전두엽이 담당하는 고위인지 기능을 AI에 통합하는 ‘프리프론탈 AI’를 구현하기 위한 기반 기술을 확보하는 것을 목표로 한다. 또한, 이번 연구에는 우리 대학 홍승훈 교수와 포항공과대학교(POSTECH)의 안성수 교수도 공동 연구진으로 참여할 예정이다. 홍승훈 교수는 시스템2 메타 학습 알고리즘을 연구하며, 안성수 교수는 시스템2 기능을 ‘과학을 위한 AI(AI4Science)’ 응용에 적용하기 위한 연구를 진행할 예정이다. 안성진 교수는 “요슈아 벤지오 교수와의 협력은 차세대 인공지능 기술 개발에 있어 중요한 이정표가 될 것이다”라며, “이 연구를 통해 인간의 전두엽이 수행하는 고위인지 기능을 모방하는 딥러닝 알고리즘을 개발하고, 안전하고 신뢰할 수 있는 인공지능 에이전트를 구현하는 기술적 기반을 마련할 수 있을 것이다”라고 연구의 의의를 설명했다. 이번 연구센터 설립을 통해 우리 대학은 국제적인 연구 네트워크를 강화하고, 인공지능 분야에서 세계적인 선도 기관으로서의 위치를 더욱 공고히 할 전망이다.
2024.09.04
조회수 2765
미국 국방부가 주목한 C-러스트 기술 선도하다
컴퓨터 시스템을 작동시키기 위해서는 소프트웨어를 작성해야 하는데 그때 필요한 언어가 바로 프로그래밍 언어이다. 실행속도도 빠르고 유지보수도 쉬운 언어가 C언어인데 메모리 할당 및 관리 등에 치명적인 문제점을 가지고 있다. 이런 문제를 해결하기 위해 개발된 프로그래밍 언어는 러스트이다. 미국 백악관이나 국방성에서 메모리 문제를 막기 위해 러스트같이 안전한 언어 사용을 촉구하고 있는데 우리 대학 연구진이 C-러스트 코드 번역 기술을 이미 선제적으로 개발하고 선도하고 있어 화제다. 우리 대학 전산학부 류석영 교수 연구팀(프로그래밍 언어 연구실)이 C언어의 유니언(union)*을 러스트의 태그드 유니언(tagged union)으로 변환하는 기술을 세계 최초로 개발했다고 13일 밝혔다. *유니언: 여러 종류의 데이터를 같은 공간에 보관해 메모리 효율을 높이는 C언어의 핵심 기능이다. 그러나 보관된 데이터가 어떤 종류인지 구분하지 않아 메모리 문제를 일으킬 수 있다. **태그드 유니언: 같은 공간에 보관할 수 있는 여러 종류의 데이터 중 어떤 종류의 데이터를 보관하는지 태그를 붙여서 구분하여, 메모리 문제를 일으키지 않는다. 연구팀은 C언어의 유니언에 특화된 새로운 프로그램 분석 기법을 고안해 러스트의 태그드 유니언으로 자동 번역하는 데 성공했다. 올해 2월 백악관에서도 C언어의 사용을 중단하라고 촉구한 바가 있고(https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf) 미국 국방고등연구계획국(이하 DARPA)에서 C언어로 작성된 코드를 러스트(Rust)로 자동 번역하는 기술을 개발하는 연구 과제를 발표했다.(https://www.darpa.mil/program/translating-all-c-to-rust) DARPA는 미국 국방성의 연구·개발을 담당하는 기관이며 인터넷의 원형인 아파넷(ARPANET)을 개발하는 등 혁신적이고 영향력 있는 연구를 지원해 왔다. DARPA는 이 과제를 제안하며 C의 메모리 문제를 막기 위해 러스트같이 안전한 언어를 사용해야 한다고 밝혔다. 러스트는 2015년부터 개발된 프로그래밍 언어다. 운영 체제, 웹 브라우저 개발 등에 쓰이며, 2022년에는 리눅스(Linux) 개발에도 공식 사용되기 시작했다.(https://www.infoq.com/news/2022/12/linux-6-1-rust/) C와 달리 프로그램 실행 전에 메모리 문제를 탐지하고 예방할 수 있는 것이 특징이다. 류 교수 연구진은 2023년 5월과 2024년 6월에 각각 C의 뮤텍스(mutex)*와 출력 파라미터(output parameter)**를 러스트로 변환하는 기술을 세계 최초로 개발해, 최우수 국제 학술대회인 국제소프트웨어엔지니어링학회(ICSE)와 프로그래밍언어설계구현학회(PLDI)에 발표한 바 있다. *뮤텍스: 프로그램 동기화에 필요한 기능 **출력 파라미터: 계산 결과 전달에 사용되는 기능 C언어와 러스트의 큰 간극으로 인해 세계적으로도 C-러스트 코드 번역 기술을 성공적으로 개발한 연구팀은 극소수다. 그마저도 포인터(pointer)*를 변환하는 데 머물고 있다. 그러나 류석영 교수 연구팀은 C의 여러 핵심 기능을 변환하는 기법을 연달아 제시해 C-러스트 코드 번역 기술을 선도하고 있다. *포인터: 데이터 저장 위치를 표현하는 기능 류석영 교수는 “안전한 소프트웨어 제작을 목표로 연구하면서 C-러스트 코드 번역의 중요성을 일찍이 파악하고 각종 프로그래밍 언어 기법들을 코드 번역에 적극적으로 도입하여 나온 결과”라면서, “완전한 자동 번역을 위해 아직 풀어야 할 난제가 많으니 후속 연구에 정진하여 계속 분야를 선도하겠다”고 말했다. 전산학부 홍재민 석박사통합과정 학생이 제1 저자로 참여한 이번 연구 결과는 최우수 국제 학술대회인 국제자동소프트웨어엔지니어링학회(ASE)에 채택됐다(논문명: To Tag, or Not to Tag: Translating C's Unions to Rust's Tagged Unions). 한편 이번 연구는 한국연구재단 선도연구센터 및 중견연구자지원사업, 정보통신기획평가원(IITP), 삼성전자의 지원을 받아 수행됐다.
2024.08.13
조회수 3125
인프라 없어도 치매 환자 신속히 찾을 수 있어요
무선랜이나 블루투스와 같은 무선신호 인프라가 설치되지 않은 건설 현장과 공장 건물에서도 동작하고, 어린이나 치매 노인을 찾아낼 수 있는 실내외 통합 GPS 시스템을 우리 연구진이 개발해 화제다. 우리 대학 전산학부 지능형 서비스통합 연구실 한동수 교수 연구팀이 전 세계 모든 건물에서 위치 서비스를 제공할 수 있는 ‘범용 실내외 통합 GPS 시스템’을 개발했다고 12일 밝혔다. 이번에 개발된 범용 실내외 통합 GPS 시스템인 카이로스(KAILOS, KAIST LOcating System)는 서비스 범위를 소수의 특정된 건물에서 벗어나 전 세계 모든 건물로 확장했다. 위치 인프라 제약에서도 벗어나 앞으로는 무선 신호가 부재한 건물에서도 구동되는, 소위 범용적인 실내외 통합 GPS 위치인식 서비스가 가능해질 전망이다. 연구팀은 실내외 전환 탐지 AI 기법과 건물 출입구를 탐지하는 AI 기법을 통합시킨 센서퓨전 위치인식 기법을 개발했다. 이 기법들은 건물 출입구 탐지, 층 탐지, 계단/엘리베이터와 같은 랜드마크 탐지 기법이 보행자 항법 기법(PDR)과 연계돼 작동한다. 구체적으로 연구팀은 GPS 신호와 관성센서에서 얻어지는 신호를 복합적으로 활용해 사용자가 진입하는 건물을 판별하고 건물에 진입하는 시점과 위치를 실시간에 탐지하는 기법을 개발했다. 건물 내에서는 기압과 관성센서를 활용해 계단/엘리베이터를 이용한 수직 이동을 탐지하고 기압 정보를 활용해 층을 탐지하는 기법도 개발했다. 한편 연구팀은 GPS, 와이파이(WiFi), 블루투스 신호 칩과 관성센서, 기압 센서, 지자기 센서, 조도 센서를 통합시킨 위치 전용 사물인터넷(IoT) 태그도 제작했다. 개발된 태그에 장착된 GPS 센서는 위성에서 직접 수신되는 L1 신호뿐 아니라 건물에 반사되는 L5 신호도 처리해 도심 협곡에서도 높은 정확도를 달성할 수 있다. 이제 위치 태그만 있으면 LTE 신호가 제공되는 전 세계 어느 건물에서도 실내외 구분 없이 위치를 추정하고, 추정된 위치에 기반한 다양한 실내외 통합 위치기반 응용 서비스를 개발할 수 있다. 사물인터넷(IoT) 태그의 배터리 소요에 있어서는 위치 서비스 주기에 따라 달라질 수 있지만 실시간 서비스 조건이 완화된 환경에서는 배터리 충전 없이 수일 동안 서비스를 제공할 수 있음을 확인했다. 연구팀은 스마트폰을 위치 단말로 사용하는 스마트폰에서 구동되는 실내외 통합 GPS 앱도 함께 개발했다. 개발된 앱은 위치기반 안전, 편의, 엔터테인먼트와 같은 응용 분야에서 널리 사용되면 연구팀이 보유하고 있는 ‘크라우드소싱 무선 라디오맵 구축 자동화 기법’과 접목해 도시 혹은 국가 수준의 정밀한 무선 라디오맵 구축도 가능해질 전망이다. 향후 도시 및 국가 수준의 라디오맵이 구축되면 신뢰도 높고 정확한 실내외 통합 GPS 서비스를 할 수 있다. 연구팀을 이끄는 전산학부 한동수 교수는 “이번에 업그레이드된 카이로스(KAILOS) 실내외 통합 GPS 시스템은 위치 인프라가 설치되지 않은 건설 현장과 공장 건물에서 개발된 시스템의 기능과 성능을 평가하는 6차례의 개념 증명(Proof of Concept, PoC) 과정도 수행해 상용화 가능성을 입증했다”며, “또한 어린이나 치매 노인 보호를 위해 실내외 통합 GPS 위치 태그를 신발에 장착하려는 요구가 있다. 건설 현장, 그리고 조선소, 제철소와 같은 공장 작업자의 안전을 위치에 기반해 관리하려는 시도도 있다. 이번에 개발한 시스템은 이런 상황에 적용이 쉬우며, 소방관이나 경찰의 도움이 필요한 구조요청에도 신속하게 대응할 수 있다”고 말했다. 이번에 개발된 실내외 통합 GPS 시스템은 2022년 개발이 시작된 한국형 GPS 시스템(KPS)의 서비스 영역을 실내로 확장하는 데도 활용될 것으로 기대된다. 한편 이번 연구는 방위사업청의 재원을 받아 국방과학연구소의 지원(미래도전 국방기술 연구개발사업)으로 수행됐다.
2024.08.12
조회수 1651
변화에 민감한 사용자도 맞춰주는 인공지능 기술 개발
인공지능 심층신경망 모델의 추천시스템에서 시간이 지남에 따라 사용자의 관심이 변하더라도 변화한 관심 또한 효과적으로 학습할 수 있는 인공지능 훈련 기술 개발이 요구되고 있다. 사용자의 관심이 급변하더라도 기존의 지식을 유지하며 새로운 지식을 축적하는 인공지능 연속 학습을 가능하게 하는 기술이 KAIST 연구진에 의해 개발됐다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 데이터 변화에 적응하며 새로운 지식을 학습함과 동시에 기존의 지식을 망각하지 않는 새로운 연속 학습(continual learning) 기술을 개발했다고 5일 밝혔다. 최근 연속 학습은 훈련 비용을 줄일 수 있도록 프롬프트(prompt) 기반 방식이 대세를 이루고 있다. 각 작업에 특화된 지식을 프롬프트에 저장하고, 적절한 프롬프트를 입력 데이터에 추가해 심층신경망에 전달함으로써 과거 지식을 효과적으로 활용한다. 이재길 교수팀은 기존 접근방식과 다르게 작업 간의 다양한 변화 정도에 적응할 수 있는 적응적 프롬프팅(adaptive prompting)에 기반한 연속 학습 기술을 제안했다. 현재 학습하려는 작업이 기존에 학습하였던 작업과 유사하다면 새로운 프롬프트를 생성하지 않고 그 작업에 할당된 프롬프트에 추가로 지식을 축적한다. 즉, 완전히 새로운 작업이 입력될 때만 이를 담당하기 위한 새로운 프롬프트를 생성하도록 하고 연구팀은 새로운 작업이 들어올 때마다 클러스터링이 적절한지 검사해 최적의 클러스터링 상태를 유지하도록 했다. 연구팀은 이미지 분류 문제에 대해 작업 간의 다양한 변화 정도를 가지는 실세계 데이터를 사용해 방법론을 검증했다. 이 결과 연구팀은 기존의 프롬프트 기반 연속 학습 방법론에 비해, 작업 간의 변화 정도가 항상 큰 환경에서는 최대 14%의 정확도 향상을 달성했고, 작업 간의 변화가 클 수도 있고 작을 수도 있는 환경에서는 최대 8%의 정확도 향상을 달성했다. 또한, 제안한 방법에서 유지하는 클러스터 개수가 실제 유사한 작업의 그룹 개수와 거의 같음을 확인했다. 온라인 클러스터링을 수행하는 비용이 매우 작아 대용량 데이터에도 쉽게 적용할 수 있다. 연구팀을 지도한 이재길 교수도 "연속 학습 분야의 새로운 지평을 열 만한 획기적인 방법이며 실용화 및 기술 이전이 이뤄지면 심층 학습 학계 및 산업계에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다. 전산학부 김도영 박사과정 학생이 제1 저자, 이영준 박사과정, 방지환 박사과정 학생이 제4, 제6 저자로 각각 참여한 이번 연구는 최고권위 국제학술대회 `국제머신러닝학회(ICML) 2024'에서 지난 7월 발표됐다. (논문명 : One Size Fits All for Semantic Shifts: Adaptive Prompt Tuning for Continual Learning) 한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 사람중심인공지능핵심원천기술개발사업 AI학습능력개선기술개발 과제로 개발한 연구성과 결과물(2022-0-00157, 강건하고 공정하며 확장 가능한 데이터 중심의 연속 학습)이다.
2024.08.06
조회수 1571
가짜 분유는 이제 스마트폰으로 손쉽게 찾아낸다
가짜 분유 파문은 현재까지도 지속적으로 발생하고 있으며 수만 명의 영유아의 생명을 위협하는 심각한 전세계적 문제다. 하지만 이러한 가짜 분유의 진위 여부를 쉽게 확인하는 것은 거의 불가능에 가깝다. 공동연구진은 스마트폰을 활용해 위조 분유를 빠르고 정확하게 탐지하는 시스템을 개발해서 화제가 되고 있다. 우리 대학 전산학부 한준 교수 연구팀이 연세대, POSTECH, 싱가포르국립대와 공동연구를 통해서 스마트폰을 이용한 가짜 분유 탐지 기술을 개발했다고 2일 밝혔다. 한준 교수 연구팀은 스마트폰에 탑재된 일반 카메라만을 사용해 위조 분말을 탐지하는 ‘파우듀(PowDew)’ 시스템을 개발했다. 연구팀이 최초 개발한 이 시스템은 분말 식품의 성분 및 제조 과정 등에 따라 결정되는 고유한 물리적 성질(습윤성 및 다공성 등)과 액체류와의 상호작용을 이용했다. 이 시스템을 활용하면 소비자가 본인의 스마트폰 카메라로 분유 가루 위에 떨어진 물방울의 움직임을 관측해 손쉽게 분유의 진위를 확인할 수 있다고 전했다. 또한 연구팀은 실험을 통해 6개의 서로 다른 분유 브랜드에 대해 최대 96.1%의 높은 정확도로 위조 분유를 탐지할 수 있음을 확인했다. 나아가 이 기술의 응용 분야는 향후 분유 뿐만 아니라 다양한 식품 및 의약품군으로 확장될 수 있을 것으로 기대된다. 소비자뿐만 아니라 유통사 및 정부 기관의 손쉬운 진위 확인도 가능하게 하여 효율적이고 안전한 제품 유통을 가능하게 할 수 있다. 한준 교수는 “이 기술이 소비자들이 쉽게 사용할 수 있는 검사 도구가 되어 시장에 유통되는 위조 분말 식품을 줄이는 데 크게 기여할 것”이라며 “다양한 분야로의 확장을 통해 위조 제품 문제 해결에 앞장서겠다”고 말했다. 연구팀은 해당 연구의 중요성과 혁신성을 인정받아 모바일 컴퓨팅 분야 최고 권위 국제 학술대회인 ‘ACM 모비시스(ACM MobiSys)’에서 2024 최우수논문상(Best Paper Award)을 수상했다. (논문명: PowDew: Detecting Counterfeit Powdered Food Products using a Commodity Smartphone) 한편 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2024.08.02
조회수 2880
로봇 등 온디바이스 인공지능 실현 가능
자율주행차, 로봇 등 온디바이스 자율 시스템 환경에서 클라우드의 원격 컴퓨팅 자원 없이 기기 자체에 내장된 인공지능 칩을 활용한 온디바이스 자원만으로 적응형 AI를 실현하는 기술이 개발됐다. 우리 대학 전산학부 박종세 교수 연구팀이 지난 6월 29일부터 7월 3일까지 아르헨티나 부에노스아이레스에서 열린 ‘2024 국제 컴퓨터구조 심포지엄(International Symposium on Computer Architecture, ISCA 2024)’에서 최우수 연구 기록물상(Distinguished Artifact Award)을 수상했다고 1일 밝혔다. * 논문명: 자율 시스템의 비디오 분석을 위한 연속학습 가속화 기법(DaCapo: Accelerating Continuous Learning in Autonomous Systems for Video Analytics) 국제 컴퓨터 구조 심포지움(ISCA)은 컴퓨터 아키텍처 분야에서 최고 권위를 자랑하는 국제 학회로 올해는 423편의 논문이 제출됐으며 그중 83편 만이 채택됐다. (채택률 19.6%). 최우수 연구 기록물 상은 학회에서 주어지는 특별한 상 중 하나로, 제출 논문 중 연구 기록물의 혁신성, 활용 가능성, 영향력을 고려해 선정된다. 이번 수상 연구는 적응형 AI의 기반 기술인 ‘연속 학습’ 가속을 위한 NPU(신경망처리장치) 구조 및 온디바이스 소프트웨어 시스템을 최초 개발한 점, 향후 온디바이스 AI 시스템 연구의 지속적인 발전을 위해 오픈소스로 공개한 코드, 데이터 등의 완성도 측면에서 높은 평가를 받았다. 연구 결과는 소프트웨어 중심 자동차(SDV; Software-Defined Vehicles), 소프트웨어 중심 로봇(SDR; Software-Defined Robots)으로 대표되는 미래 모빌리티 환경에서 온디바이스 AI 시스템을 구축하는 등 다양한 분야에 활용될 수 있을 것으로 기대된다. 상을 받은 전산학부 박종세 교수는 “이번 연구를 통해 온디바이스 자원만으로 적응형 AI를 실현할 수 있다는 것을 입증하게 되어 매우 기쁘고 이 성과는 학생들의 헌신적인 노력과 구글 및 메타 연구자들과의 긴밀한 협력 덕분이다”라며, “앞으로도 온디바이스 AI를 위한 하드웨어와 소프트웨어 연구를 지속해 나갈 것이다”라고 소감을 전했다. 이번 연구는 우리 대학 전산학부 김윤성, 오창훈, 황진우, 김원웅, 오성룡, 이유빈 학생들과 메타(Meta)의 하딕 샤르마(Hardik Sharma) 박사, 구글 딥마인드(Google Deepmind)의 아미르 야즈단바크시(Amir Yazdanbakhsh) 박사, 전산학부 박종세 교수가 참여했다. 한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 대학ICT연구센터(ITRC), 인공지능대학원지원사업, 인공지능반도체대학원지원사업의 지원을 받아 수행됐다.
2024.08.01
조회수 2612
혐오 발언 탐지의 문화적 차이 해결, NAACL 2024에서 Resource Award 수상
전산학부 Users & Information Lab. 연구실의 오혜연 교수와 제1저자 석사과정 이나연(오혜연 교수 지도 학생)의 연구가 지난 6월 16일부터 21일까지 멕시코시티에서 열린 '2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics' (NAACL 2024) 국제 학회에서 '교차 문화적 데이터셋 구축을 통한 영어 혐오 발언 어노테이션의 문화 간 차이와 영향 분석(Exploring Cross-Cultural Differences in English Hate Speech Annotations: From Dataset Construction to Analysis)'에 관한 논문으로 '리소스 어워드(Resource Award)'를 수상했다. NAACL은 자연어처리 분야에서 최고 권위를 자랑하는 국제 학회로, 올해는 2,434편의 논문이 제출되었으며 그 중 565편만이 채택되었다 (채택률 23.2%). Resource Award는 학회에서 주어지는 특별한 상 중 하나로, 제출 논문 중 혁신성, 활용 가능성, 영향력, 품질을 고려하여 선정된다. 이번 수상 연구는 교차 문화적 영어 혐오 발언 데이터셋을 구축하고, 문화 간 어노테이션 차이와 대형 언어 모델의 편향성을 분석하여 영어 혐오 발언 분류기의 문화적 민감성을 향상시키는 데 기여했다는점에서 높은 평가를 받았다. 이번 연구에는 KAIST 전산학부의 이나연, 정찬이, 명준호, 진지호 학생들과 Cardiff University의 Jose Camacho-Collados 교수, KAIST 전산학부의 김주호 교수, 오혜연 교수가 참여하였다. 본 연구는 미국, 호주, 영국, 싱가포르, 남아프리카 공화국의 5개 영어권 국가에서 수집된 데이터와 어노테이션을 기반으로 하여, 각국의 문화적 배경이 혐오 발언 어노테이션에 미치는 영향을 분석했다. 이를 통해 문화적 배경이 혐오 발언 인식에 미치는 중요한 차이를 밝혀냈으며, 특히 서구권 국가와 다른 문화적 맥락을 가진 국가 간의 어노테이션 차이가 두드러짐을 보였다. 오혜연 교수와 이나연 학생은 "이번 연구를 통해 혐오 발언 탐지에 있어 문화적 차이의 중요성을 밝힐 수 있어 기쁩니다. 연구팀의 노력 덕분에 이러한 성과를 얻을 수 있었으며, 앞으로도 자연어처리 분야에서 문화적 다양성을 고려한 연구를 지속해 나가겠습니다."라고 소감을 전했다. 이번 수상은 KAIST 연구팀의 혁신적인 접근과 자연어처리 분야에서의 문화 간 연구의 중요성을 국제적으로 인정받은 결과이다. 이는 앞으로 관련 연구 발전에 큰 기여를 할 것으로 기대된다. 연구 결과는 혐오 발언 탐지 분야뿐만 아니라, 다문화 사회에서의 인공지능 윤리와 문화적 편향성 해소 등 다양한 분야에 활용될 수 있을 것으로 기대된다. 자세한 내용은 논문 링크(https://aclanthology.org/2024.naacl-long.236)에서 확인할 수 있다.
2024.07.16
조회수 1999
세계 최대 컴퓨터학회에서 처음 5편 논문 발표
세계 최대 컴퓨터 학회에서 주간한 학술대회(PLDI)에서 2012년에 한국에서 처음 논문을 발표한 이래, KAIST 연구진이 처음으로 3편 이상의 논문을 발표하여 화제다. 우리 대학 전산학부 강지훈 교수, 류석영 교수 연구팀이 프로그래밍 언어 분야 최고 권위 학술대회인 PLDI에서 올해 발표될 89편의 논문 중 6.7%인 5편의 논문을 발표했다고 3일 밝혔다. PLDI(Programming Language Design and Implementation)는 세계 최대 컴퓨터 학회인 ACM(Association for Computing Machinery)이 주관하는 학술대회로, 지난 45년간 전산학 전체에 깊은 영향을 미치는 중요한 논문이 다수 발표된 유서 깊은 학술대회다. 프로그래밍 언어와 컴파일러 등 소프트웨어 전반의 기초가 되는 핵심 기술을 발표하고 있다. 이번 학회에 발표되는 5개의 논문은 아래와 같다. 1) 멀티코어 컴퓨팅 시스템에서 동작하는 고성능 병렬 자료구조가 사용을 마친 메모리를 수집하기 위해 다양한 기법을 제안 2) 멀티코어 컴퓨팅 시스템에서 성능을 높이기 위해 운영체제, 데이터베이스 등 고성능 시스템 소프트웨어의 안전성을 현실적으로 증명할 수 있는 토대 마련 3) 시스템 반도체의 논리적인 청사진이라 할 수 있는 RTL(register-transfer level) 설계 및 검증비용을 획기적으로 줄일 수 있는 프로그래밍 언어 개발 4) 빠르지만 안정성이 취약한 C 언어로 작성된 프로그램을 더 안전한 러스트(Rust) 언어로 작성된 프로그램으로 자동 변환하는 연구 5) 산업계에서 가장 널리 사용하는 자바스크립트 프로그래밍 언어의 공식 개발 과정에 적용한 기술(https://www.kaist.ac.kr/news/html/news/?mode=V&mng_no=36610)을 기반으로 웹어셈블리 언어에 특화한 연구 강지훈 교수는 “5편의 논문은 각각 학생들이 오랫동안 정성껏 연구한 결과를 담아 뛰어난 독창성과 실용성을 동시에 갖춘 우수한 논문들”이라면서 “이 논문들이 앞으로 지속적으로 프로그래밍 언어와 인접 전산학 분야, 그리고 더 나아가서 산업계에 깊은 영향을 미칠 수 있도록 후속 연구에 정진할 것”이라고 포부를 밝혔다. 류석영 교수는 “반도체, 운영체제, 클라우드 등 인프라부터 사용자에게 제공하는 서비스까지 모두를 아우르는 풀 스택 소프트웨어를 안전하고 올바르게 동작하도록 설계하고 개발하는 세계적인 기술을 선보인 결과”라며, “소프트웨어가 이끄는 세상에서 더 안전하고 올바르게 동작하는 소프트웨어를 사용할 수 있기를 기대한다”고 말했다. 5편의 논문은 한국 시각으로 6월 21일에 PACMPL(Proceedings of the ACM on Programming Languages) 저널에 게재됐고 6월 25일부터 27일 사이에 진행된 PLDI 2024 학술대회에서 발표됐다. (논문 제목: ① Concurrent Immediate Reference Counting, ② A Proof Recipe for Linearizability in Relaxed Memory Separation Logic, ③ Modular Hardware Design of Pipelined Circuits with Hazards, ④ Don't Write, but Return: Replacing Output Parameters with Algebraic Data Types in C-to-Rust Translation, ⑤ Bringing the WebAssembly Standard up to Speed with SpecTac) 한편 이번 연구는 한국연구재단 선도연구센터, 중견연구자지원사업 및 우수신진연구자지원사업, 정보통신기획평가원(IITP), 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2024.07.03
조회수 2530
기업 의사결정을 거대언어모델로 최초 해결
기업 내외의 상황에 따라 끊임없이 새롭게 결정해야 하는 기업 의사결정 문제는 지난 수십 년간 기업들이 전문적인 데이터 분석팀과 고가의 상용 데이터베이스 솔루션들을 통해 해결해 왔는데, 우리 연구진이 최초로 거대언어모델을 이용하여 풀어내어 화제다. 우리 대학 전산학부 김민수 교수 연구팀이 의사결정 문제, 기업 데이터베이스, 비즈니스 규칙 집합 세 가지가 주어졌을 때 거대언어모델을 이용해 의사결정에 필요한 정보를 데이터베이스로부터 찾고, 비즈니스 규칙에 부합하는 최적의 의사결정을 도출할 수 있는 기술(일명 계획 RAG, PlanRAG)을 개발했다고 19일 밝혔다. 거대언어모델은 매우 방대한 데이터를 학습했기 때문에 학습에 사용된 바 없는 데이터를 바탕으로 답변할 때나 오래전 데이터를 바탕으로 답변하는 등 문제점들이 지적되었다. 이런 문제들을 해결하기 위해 거대언어모델이 학습된 내용만으로 답변하는 것 대신, 데이터베이스를 검색해 답변을 생성하는 검색 증강 생성(Retrieval-Augmented Generation; 이하 RAG) 기술이 최근 각광받고 있다. 그러나, 사용자의 질문이 복잡할 경우 다양한 검색 결과를 바탕으로 추가 정보를 다시 검색하여 적절한 답변을 생성할 때까지 반복하는 반복적 RAG(IterativeRAG)라는 기술이 개발됐으며, 이는 현재까지 개발된 가장 최신의 기술이다. 연구팀은 기업 의사결정 문제가 GPT-3.5 터보에서 반복적 RAG 기술을 사용하더라도 정답률이 10% 미만에 이르는 고난도 문제임을 보이고, 이를 해결하기 위해 반복적 RAG 기술을 한층 더 발전시킨 계획 RAG(PlanRAG)라는 기술을 개발했다. 계획 RAG(PlanRAG)는 기존의 RAG 기술들과 다르게 주어진 의사결정 문제, 데이터베이스, 비즈니스 규칙을 바탕으로 어떤 데이터 분석이 필요한지에 대한 거시적 차원의 계획(plan)을 먼저 생성한 후, 그 계획에 따라 반복적 RAG를 이용해 미시적 차원의 분석을 수행한다. 이는 마치 기업의 의사결정권자가 어떤 데이터 분석이 필요한지 계획을 세우면, 그 계획에 따라 데이터 분석팀이 데이터베이스 솔루션들을 이용해 분석하는 형태와 유사하며, 다만 이러한 과정을 모두 사람이 아닌 거대언어모델이 수행하는 것이 커다란 차이점이다. 계획 RAG 기술은 계획에 따른 데이터 분석 결과로 적절한 답변을 도출하지 못하면, 다시 계획을 수립하고 데이터 분석을 수행하는 과정을 반복한다. 김민수 교수는 “지금까지 거대언어모델 기반으로 의사결정 문제를 푼 연구가 없었던 관계로, 기업 의사결정 성능을 평가할 수 있는 의사결정 질의응답(DQA) 벤치마크를 새롭게 만들었다. 그리고 해당 벤치마크에서 GPT-4.0을 사용할 때 종래의 반복적 RAG에 비해 계획 RAG가 의사결정 정답률을 최대 32.5% 개선함을 보였다. 이를 통해 기업들이 복잡한 비즈니스 상황에서 최적의 의사결정을 사람이 아닌 거대언어모델을 이용하여 내리는데 적용되기를 기대한다”고 말했다. 이번 연구에는 김 교수의 제자인 이명화 박사과정과 안선호 석사과정이 공동 제1 저자로, 김 교수가 교신 저자로 참여했으며, 연구 결과는 자연어처리 분야 최고 학회(top conference)인 ‘NAACL’ 에 지난 6월 17일 발표됐다. (논문 제목: PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers) 한편, 이번 연구는 과기정통부 IITP SW스타랩 및 ITRC 사업, 한국연구재단 선도연구센터인 암흑데이터 극한 활용 연구센터의 지원을 받아 수행됐다.
2024.06.19
조회수 2519
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
>
다음 페이지
>>
마지막 페이지 5