본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%82%98%EB%85%B8%ED%8C%A8%ED%84%B0%EB%8B%9D
최신순
조회순
화학물질 없이 식각하는 반도체 기술 최초 개발
차세대 반도체 메모리의 소재로 주목을 받고 있는 강유전체는 차세대 메모리 소자 혹은 작은 물리적 변화를 감지하는 센서로 활용되는 등 그 중요성이 커지고 있다. 이에 반도체의 핵심 소자가 되는 강유전체를 화학물질없이 식각할 수 있는 연구를 성공해 화제다. 우리 대학 신소재공학과 홍승범 교수가 제네바 대학교와 국제공동연구를 통해 강유전체 표면의 비대칭 마멸* 현상을 세계 최초로 관찰 및 규명했고, 이를 활용해 혁신적인 나노 패터닝 기술**을 개발했다고 26일 밝혔다. *마멸: 물체 표면의 재료가 점진적으로 손실 또는 제거되는 현상 **나노 패터닝 기술: 나노스케일로 소재의 표면에 정밀한 패턴을 생성하여 다양한 첨단 기술 분야에서 제품 성능을 향상시키는데 사용되는 기술 연구팀은 강유전체 소재의 표면 특성에 관한 연구에 집중했다. 이들은 원자간력 현미경(Atomic Force Microscopy)을 활용해 다양한 강유전체의 트라이볼로지(Tribology, 마찰 및 마모) 현상을 관찰했고, 강유전체의 전기적인 분극* 방향에 따라 마찰되거나 마모되는 특성이 다르다는 것을 세계 최초로 발견했다. (그림 1) 아울러, 이러한 분극 방향에 따라 달라지는 트라이볼로지의 원인으로 변전 효과(Flexoelectric effect)*에 주목했다. *전기적 분극(electric dipole): 자석의 북극과 남극처럼 전기적으로 양극과 음극이 있는 것을 의미함 *변전 효과: 물질이 휘어졌을 때 분극이 발생하는 현상이지만, 거시 규모에서 물질을 구부렸을 때 유도되는 분극의 크기가 매우 작아 그동안 큰 주목을 받지 못했다. 그러나 2010년대 들어서 물질이 나노스케일로 미세화될 경우, 매우 큰 변전 효과가 발생할 수 있다는 연구 결과가 나오면서 많은 연구자의 주목을 받기 시작했다. 연구진은 강유전체의 트라이볼로지 특성이 나노 단위에서 강한 응력이 가해질 때 발생하는 변전 효과로 인해 강유전체 내부의 분극 방향에 따른 상호작용으로 트라이볼로지 특성이 바뀌게 된다는 것을 발견했다. 또한 이러한 새로운 강유전체 트라이볼로지 현상을 소재의 나노 패터닝에 응용했다. 이러한 패터닝 방식은 기존의 반도체 패터닝 방식과는 다르게 화학 물질 및 고비용의 리소그래피 장비가 필요하지 않고, 기존 공정 대비 매우 빠르게 나노 구조를 제작할 수 있는 장점이 있다. 이번 연구의 제1 저자인 신소재공학과 졸업생 조성우 박사는 “이번 연구는 세계 최초로 강유전체 비대칭 트라이볼로지를 관찰하고 규명한 데 의의가 있고, 이러한 분극에 민감한 트라이볼로지 비대칭성이 다양한 화학적 구성 및 결정 구조를 가진 강유전체에서 널리 적용될 수 있어 많은 후속 연구를 기대할 수 있다”고 밝혔다. 공동교신저자로 본 연구를 공동 지도한 제네바 대학교 파루치(Paruch) 교수는 “변전 효과를 통해 강유전체의 도메인이 분극 방향에 따라 서로 다른 표면 특성을 나타내는 것을 활용함으로써, 다양하고 유용한 기술들을 개발할 수 있을 것이다”며 이번 연구가 앞으로 뻗어나갈 분야에 대한 강한 자신감을 피력했다. 연구를 이끈 홍승범 교수는 “이번 연구에서 개발된 패터닝 기술은 기존 반도체 공정에서 쓰이는 패터닝 공정과 달리 화학 물질을 사용하지 않고, 매우 낮은 비용으로 대면적 나노 구조를 만들 수 있어 산업적으로 활용될 수 있는 잠재력을 가지고 있다”고 전망했다. 한편, 이번 연구는 한국연구재단(2020R1A2C2012078, NRF-2022K1A4A7A04095892, RS-2023-00247245), KAIST 글로벌특이점 사업의 지원 및 스위스, 스페인 연구진과의 국제공동연구를 통해 수행됐으며, 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 1월 9일 자 출판됐다. (논문 제목: Switchable tribology of ferroelectrics)
2024.03.26
조회수 4275
극미량의 액체를 정밀하게 측정하고 분석할 수 있는 새로운 플랫폼 개발
우리 대학 기계공학과 이정철 교수 연구팀이 마이크로히터와 유동 채널이 내장된 미세전자기계시스템(MEMS) 소자를 이용해 극미량의 유체에 대한 열전달 관련 측정과 공정을 개발할 수 있는 새로운 실험 플랫폼인 열원-미소채널 통합 공진 센서 (heater-integrated fluidic resonator, 이하 HFR)를 개발했다고 21일 밝혔다. 2015년, 벤처 기업 `테라노스'의 피 한 방울로 질병을 진단할 수 있다는 주장은 정밀 분석을 위해 많은 혈액이 필요하던 미국 전역에 큰 충격으로 다가왔다. 결국 허구로 밝혀진 이 사건은 아주 적은 양의 샘플을 이용해 정밀한 측정을 수행하고자 하는 현대 사회의 요구 사항을 단적으로 보여주는 예시다. 마이크로 유체 채널이 통합된 센서는 많은 연구자에 의해 꾸준히 개발되고 있다. 하지만 아직 큰 크기를 갖는 상용화된 센서들(마이크로/나노 공정의 적용이 필요 없는)에 비해 적은 정확도를 갖는다는 한계가 있었다. 이에 연구팀은 밀도/질량 측정에만 주로 사용되지만 오히려 소형화될수록 높은 정확도를 갖는 장점이 있는 기계 공진 센서에 주목했다. 지금까지의 유체 채널 통합 공진 센서는 신뢰할 만한 결과의 확보를 위해 동일한 온도에서의 측정이 필요했다. 반면 이정철 교수팀은 이번 연구에서 온도를 자유자재로 제어하며 고정확도의 공진 측정을 병행함으로써 밀도/질량 측정 이상으로 다양한 현상과 물리량을 분석하는 아이디어를 제시했다. 연구팀은 개발한 플랫폼을 이용해 20pL(피코 리터) 이하 액체의 열전도도, 밀도, 비열을 동시에 측정할 수 있는 방법을 제시하고 1,000개 데이터를 1분 이내에 수집함으로써 고정확도의 계측을 구현했으며, 마이크로채널 내부의 비등 상변화 현상을 다중 공진 주파수로 측정해 기존의 상변화 현상 분석 기법에 비해 이력(hysteresis)과 기포의 초기 발생 시점을 더 명확하게 관측했다. 또한 연구팀은 마이크로채널 자유단에 노즐이 있는 열원-미소채널 통합 공진 센서를 사용해 전열 분무 현상을 유도하고 토출 공정을 공진 주파수로 실시간 관측할 수 있는 방법을 제시함으로써, 이전까지는 불가능했던 고속 카메라와 같은 장비 없이 노즐 자체의 측정만을 이용한 미립화 액적 토출 공정 모니터링을 구현했다. 이는 나노/마이크로 입자 및 세포 측정 분야에만 국한되어 사용되었던 극미량의 질량 측정 기술을 물리 화학적 측정 센서, 나노 패터닝 공정 제어, 상변화/열전달 제어 등 다양한 분야의 연구자들이 응용할 수 있도록 아이디어를 제시하고 그 활용 가능성을 검증한 데에 의의가 있다. 이번 연구는 국제학술지 `나노 레터스(Nano Letters)'에 지난 8월 18일 자에 온라인 게재됐으며 10월 호의 표지 논문(front cover)로 선정됐다. 이번 연구는 유체 채널 내에 가열 및 온도 측정의 기능성을 통합한 이번 연구와 비슷한 접근법으로 자성(magnetic) 혹은 압전(piezoelectric) 기술을 채널 공진 센서 기술과 융합해 자기장(magnetic field) 혹은 음향장(acoustic field)을 정밀하게 분석할 수 있는 플랫폼 등으로의 아이디어 확장이 가능하다. 측정 기법의 새로운 패러다임을 제시하는 이번 연구는 기존의 상용화된 장비들을 대체할 수 있는 고성능 측정 장비의 개발 등을 촉진할 것으로 기대된다. 한편 이번 연구는 한국연구재단의 중견연구자 지원사업과 기초연구실 지원사업, 그리고 산업기술평가관리원의 시장선도를 위한 한국 주도형 K-센서(K-Sensor) 기술개발 사업의 지원을 받아 수행됐다.
2022.11.21
조회수 7129
촉각 증강을 위한 고탄성 압전 세라믹 신소재 개발
언택트(비대면) 시대를 맞아 가상현실(VR)과 증강현실(AR) 기술을 통한 소통의 필요성이 증가함에 따라 인간의 오감(五感, five senses)을 전자기기를 통해 구현 및 측정하는 기술의 연구 역시 가속화되고 있다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 촉감이나 촉각 증강기술에 활용이 가능하도록 3D 나노 구조체를 활용해 탄성 변형률이 3배로 향상된 압전 세라믹 소재를 개발했다고 2일 밝혔다. 전자기기와 상호작용하는 기술에 관한 사람들의 관심이 꾸준히 높아지는 추세를 감안한다면 특히 인간의 일반적인 자극인지 방식을 고려할 때, 사용자에게 2개 이상의 복합 감각이 제공되면 전자기기와 더욱 자연스럽게 상호작용을 할 수 있다. 따라서 최근 들어 시각 및 청각보다 상대적으로 발전이 더딘 촉감 구현 및 증강 기술이 주목을 받고 있다. 촉각 증강 기술은 의료용 로봇을 주축으로 한 로봇 기술뿐만 아니라 촉각을 통해 정보를 전달하는 햅틱 디스플레이, 햅틱 장갑 등 정보 전달 기술에 활용할 수 있다. 이러한 촉각 증강 분야에서는 전기적-기계적 결합이 있는 압전 재료의 활용이 필수적이다. 압전 재료는 전기적 에너지를 기계적 에너지로 변환하거나 기계적 에너지를 전기적 에너지로 변환할 수 있는 소재로서 촉각 증강 분야에서 사용자에게 촉각을 전달하거나 사용자의 움직임을 전기적 신호로 변형시키는데 적합한 소재다. 촉각 증강 소재로 활용하기 위한 압전 재료의 중요한 특징은 압전 계수와 탄성 변형률이다. 압전 계수는 기계적 힘과 전기적 전하량 간의 변환 효율을 나타내는 수치로써 촉각 증강 장치의 감도에 영향을 준다. 또 탄성 변형률은 소재가 가질 수 있는 기계적 변형 한계를 나타내는 수치인데 소재 및 장치가 가지는 유연성에 영향을 준다. 따라서 촉각 증강 기술로 활용하기 위해서는 압전 계수와 탄성 변형률 모두가 높은 압전 소재를 개발하는 것이 필수적이다. 하지만 압전 세라믹 소재의 경우 압전 계수는 높으나 탄성 변형률이 낮고, 고분자 소재는 탄성 변형률은 높으나 압전 계수가 낮아 하나의 소재에서 높은 압전 계수와 탄성 변형률을 모두 얻기는 힘들다. 특히 세라믹 소재는 상대적으로 높은 압전 계수에도 불구하고 소재 내부의 결함으로 인해 탄성 변형률을 높이기가 어려워 아직 실용화 단계까지는 이르지 못하고 있다. 홍 교수 연구팀은 문제해결을 위해 근접장 나노 패터닝(Proximity field nanopatterning, PnP) 기술 및 원자층 증착(Atomic layer deposition, ALD) 기술을 이용해 3차원 나노 트러스(truss) 구조를 갖는 산화물 아연 (ZnO) 세라믹을 제작했다. 또 나노 인덴테이션 (Nano-indentation) 기술과 압전 감응 힘 현미경(Piezoelectric force microscopy, PFM) 기술을 이용, 제작된 구조체의 높은 기계적 특성과 압전 특성을 입증하는데 성공했다. 홍 교수팀이 개발한 압전 아연 산화물 구조체는 100 나노미터(nm) 이하의 두께를 가지면서 내부가 비어있는 트러스 구조체다. 기존 세라믹이 보유하고 있는 내부 결함의 크기를 나노미터 단위로 제한해 재료의 기계적 강도를 증가시켰다. 이 아연 산화물 트러스 구조체의 탄성 변형률은 10% 수준으로 기존 아연 산화물 대비 3배나 더 큰 것으로 나타났으며 압전 계수 역시 9.2 pm/V로 박막 형태의 아연 산화물보다 2배 이상 더 큰 값을 나타냈다. 특히 홍 교수팀이 개발한 이 구조체의 탄성 변형률 증가는 아연 산화물 외에도 다양한 압전 세라믹 소재에 적용할 수 있기에 향후 촉각 증강 기술에서 매우 중요한 유연한 센서와 액추에이터에 압전 세라믹을 활용할 수 있는 새로운 방법으로 사용할 수 있을 것으로 기대된다. 홍승범 교수는 "언택트 시대의 도래로 감성 소통의 중요성이 증가하고 있는데 시각, 청각에 이어 촉각 구현 기술의 발전을 통해 인류는 장소와 관계없이 누구와도 소통할 수 있는 새로운 세상을 맞이할 것ˮ이라고 전망했다. 홍 교수는 이어 "이번 연구 결과를 촉각 증강 소자에 바로 적용하기에는 공정적인 측면에서 다소 보강작업이 필요하지만, 소재 활용에 큰 문제가 됐던 기계적 한계를 극복해 압전 세라믹 소자로의 응용 가능성을 연 것ˮ이라고 이번 연구에 대한 의미를 부여했다. 우리 대학 신소재공학과 김훈 박사과정, 윤석중 박사과정, 김기선 박사가 공동 제1 저자로 참여한 이번 연구는 신소재공학과 전석우 교수와 한승민 교수 연구팀과 함께 진행됐으며 연구 결과는 국제 학술지 `나노 에너지(Nano Energy)'에 게재됐다. (논문명: Breaking the Elastic Limit of Piezoelectric Ceramics using Nanostructures: A Case Study using ZnO) 한편 이번 연구는 과학기술정보통신부·한국연구재단 지원 웨어러블 플랫폼 소재 기술센터 지원과 미래소재 디스커버리 지원, 그리고 기초연구 지원 및 KAIST 글로벌특이점 연구 지원으로 수행됐다.
2020.12.02
조회수 39436
빛 투과율 조절하는 능동형 광학 필름 개발
우리 대학 연구진이 기존 창호시스템을 교체하지 않고서도 투과율을 큰 폭으로 자유롭게 조절할 수 있는 에너지 절감형 스마트 윈도우 등으로 활용이 가능한 새로운 광학 필름 제작 기술을 개발했다. 우리 대학 신소재공학과 전석우 교수와 건설및환경공학과 홍정욱 교수·신소재공학과 신종화 교수 공동연구팀이 3차원 나노 복합체를 이용, 에너지의 효율적인 신축변형을 통해 세계 최고 수준의 가시광 투과율 조절이 가능한 능동형 광학 필름을 개발하는데 성공했다고 14일 밝혔다. 전석우 교수와 홍정욱 교수가 교신 저자로, 조동휘 박사과정 학생과 신라대학교 심영석 교수가 공동 1저자로 참여한 이번 연구는 재료 분야의 세계적인 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 4월 26일 字 온라인판에 게재됐다. (논문명: High-Contrast Optical Modulation from Strain-Induced Nanogaps at Three-Dimensional Heterogeneous Interfaces) 해당 연구진들은 정렬된 3차원 나노 네트워크에 기반한 신축성 나노 복합체를 이용해, 가시광 투과율을 최대 90%에서 16%까지 조절 가능한 넓은 면적의 광학 필름 제작에 필요한 원천 기술을 확보했다. 약 74%의 범위를 갖는 이는 평균적으로 46%의 범위를 가졌던 기존 2차원 필름의 수준을 훨씬 뛰어넘는 세계 최고 수준의 기술이다. 최근 제로 에너지 빌딩, 스마트 윈도우, 사생활 보호 등 에너지 저감/감성 혁신 응용에 대한 관심이 급증함에 따라, 능동형 광학 변조 기술이 주목받고 있다. 기존 외부 자극 (전기/열/빛 등)을 이용한 능동형 광학 변조 기술은 느린 반응속도와 불필요한 색 변화를 동반하고 낮은 안정성 등의 이유로 선글라스, 쇼케이스, 광고 등 매우 제한적인 분야에 적용돼왔기 때문에 현재 새로운 형태의 광학 변조 기술 개발이 활발히 진행 중이다. 에너지 효율적인 신축 변형을 이용한 광학 변조 기술은 비교적 간단한 구동 원리와 낮은 에너지 소비로 효율적으로 투과율을 제어할 수 있는 장점을 지녀 그동안 학계 및 관련 업계에서 집중적인 관심을 받아왔다. 그러나 기존 연구에서 보고된 광 산란 제어를 유도하는 구조는 대부분 광학 밀도가 낮은 2차원 표면 구조에 기반하기 때문에 좁은 투과율 변화 범위를 갖고, 물 등 외부 매질과 인접할 때 광학 변조기능을 잃는 문제를 가지고 있다. 특히, 비 정렬 구조에 바탕을 두고 있어 광학 변조 특성이 균일하지 못해서 넓은 면적으로 만들기도 힘들다. 연구팀은 정렬된 3차원 나노구조 제작에 효과적인 근접장 나노패터닝 (PnP, Proximity-field nanopatterning) 기술과 산화물 증착(증기를 표면에 얇은 막으로 입힘)을 정교하게 제어할 수 있는 원자층 증착법 (ALD, Atomic layer deposition)을 이용했다. 이에 주기적인 3차원 나노쉘 (nanoshell) 구조의 알루미나 (alumina)가 탄성중합체에 삽입된 신축성 3차원 나노복합체 필름을 현존하는 광학 변조 필름 중 가장 큰 면적인 3인치×3인치 크기로 제작하는 데 성공했다. 광학 필름을 약 60% 범위에서 당겨 늘리는 경우, 산화물과 탄성중합체의 경계면에서 발생하는 수없이 많고 작은 구멍에서 빛의 산란 현상이 발생하는데 연구진은 이를 이용해 세계 최고 수준의 가시광 투과율 조절 범위인 약 74%를 달성했다. 동시에 10,000회에 걸친 반복적인 구동 시험과 굽힘과 뒤틀림 등 거친 변형, 70℃ 이내 고온 환경에서의 구동, 물속에서의 구동 특성 등을 확인한 결과 높은 내구성과 안정성을 확인했다. 이와 함께 재료역학적‧광학적 이론 해석을 바탕으로 경계면에서 발생하는 광 산란 현상 메커니즘도 규명하는 데 성공했다. 전 교수 공동연구팀이 개발한 이 기술은 기존 창호 시스템 교체 없이도, 간단한 얇은 필름 형태로 유리 표면에 부착함으로써 투과율 조절이 가능한 에너지 절감형 스마트 윈도우로 활용이 가능하다. 이 밖에 두루마리 타입의 빔프로젝터 스크린 응용 등 감성 혁신적인 폭넓은 응용이 가능할 것으로 기대된다. 이번 연구는 한국연구재단 원천기술개발사업의 다부처 공동사업과 글로벌 프론티어 사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.05.14
조회수 18673
이산화탄소 환원 나노구조 촉매 개발
신소재공학과 전석우 교수와 오지훈 교수 연구팀이 이산화탄소의 전기화학 환원 반응 시 발생하는 물질이동의 한계를 극복해 값 비싼 금 촉매의 사용을 효과적으로 줄일 수 있는 3차원 나노구조 촉매를 개발했다. 연구팀은 두 가지 크기의 기공 네트워크를 지닌 계층 다공성 나노 구조를 이용해 이산화탄소에서 일산화탄소로의 전환율을 기존 나노 구조 촉매 대비 최대 3.96 배 높일 수 있는 촉매 디자인을 제시했다. 현가예 박사과정과 송준태 교수가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘미국 국립과학원회보(PNAS)’ 3월 4일 자 온라인판에 게재됐다. (논문명: Hierarchically Porous Au Nanostructures with Interconnected Channels for Efficient Mass Transport in Electrocatalytic CO2 Reduction) 최근 이산화탄소의 배출과 화석 연료 고갈이 심화됨에 따라 이산화탄소를 재활용해 유용한 화합물로 전기 화학적 전환하는 연구가 주목받고 있다. 이산화탄소 환원 반응은 유사한 산화환원 전위를 갖는 수소 생산 반응과 경쟁적으로 일어나는 문제점이 있어, 원하는 화합물로 선택도를 높이고 활성 부위를 극대화해 높은 전환율을 얻기 위한 금속 나노 구조 촉매 개발이 활발히 진행 중이다. 이산화탄소에서 일산화탄소로의 전환 반응 촉매 중 금은 가장 우수한 성능을 보이지만 값이 매우 비싸 실제 적용을 위해서는 나노 구조를 형성하는 등의 방법을 통해 적은 양의 금을 활용하는 것이 이상적이다. 하지만 기존 연구에서 보고된 나노 구조는 복잡하게 엉킨 촉매 구조로 인해 수계 반응을 통해 생성되는 일산화탄소 기포가 반응 도중 쉽게 구조를 막아 활성 부위를 차단하고, 전해질을 통한 반응물의 이동도 어렵게 해 촉매의 생산성을 떨어뜨린다. 연구팀은 문제 해결을 위해 정렬된 3차원 나노 구조 제작에 효과적인 근접장 나노패터닝(PnP, Proximity-field nanopatterning)과 전기 도금 기술을 이용해, 약 10나노미터 크기의 나노 기공과 200~300나노미터 크기의 매크로 기공이 주기적으로 연결된 채널을 포함하는 3차원 계층 다공성 금 나노 구조를 대면적으로 제작했다. 그 결과, 계층 나노 구조 촉매는 나노 기공을 통해 높은 일산화탄소 생산 선택도를 달성함과 동시에 주기적으로 배열된 매크로 기공 채널을 통해 효율적인 물질이동을 유도함으로써, 높은 질량당 전환율을 달성해 값 비싼 금의 사용을 효과적으로 줄일 수 있는 해결 방안을 제시했다. 또한, 3차원 나노 구조 금 촉매의 기공 크기와 분포가 조절 된 서로 다른 세 가지 나노 구조 촉매를 통해 기공 네트워크와 반응물, 생성물의 확산에 미치는 영향을 구조적 관점에서 조사했다. 이 기술은 이산화탄소 환원 촉매 연구 뿐 아니라 유사 전기화학 분야에서 발생하는 물질이동 문제를 해결하고 효율적인 촉매활용을 위한 폭넓은 응용이 가능할 것으로 기대된다. 이번 연구는 한국연구재단 원천기술개발사업의 미래소재디스커버리 사업과 나노소재원천기술개발사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.03.10
조회수 14318
윤동기 교수, 금속에 버금가는 정렬도 갖는 액정 개발
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 유동적으로 움직이는 액정 재료들을 금속과 같이 단단한 결정처럼 움직이지 않게 만드는 3차원 나노패터닝 기술을 개발했다. 이 기술은 수십 나노미터 수준의 제한된 공간에서 액정 분자들의 자기조립(self-assembly) 현상을 유도해 이뤄진다. 이는 승강기 안에 적은 수의 사람들이 있다가 많은 사람이 탑승하면서 빽빽하게 자리를 차지하는 현상과 비슷하다. 김한임 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 사이언스의 자매지인 ‘사이언스 어드밴스(Science advances)’ 2월 10일자 온라인 판에 게재됐다. 이번 연구는 향후 유기 분자 기반의 나노재료를 활용하는 기술에 다양하게 기여할 수 있을 것으로 기대된다. 액정 재료는 손쉬운 배향 제어, 빠른 반응 속도, 이방적(anisotropic)인 광학 특성 등으로 인해 액정표시장치(LCD), 광학 센서 등에 이용되는 대표적인 유기 소재이다. 그러나 액정 재료는 물풀과 같이 유동적으로 흐르기 때문에 구조의 제어가 어렵고 안정적이지 않아 활용 범위가 제한됐다. 연구팀은 문제 해결을 위해 액정 재료가 들어 있는 수십 나노미터크기의 2차원의 한정된 공간을 위아래 옆, 사방에서 눌러주는 시스템을 개발했다. 게스트(guest) 역할의 액정물질과 상호작용하는 호스트(host) 물질을 3차원적 나선형의 나노구조체로 제작함으로써 효과적으로 게스트 액정물질을 제어하는데 성공했다. 이렇게 공간 자체를 줄이게 되면 유동적으로 흐르는 액정 물질조차 마치 고체처럼 단단해지는 효과가 발생한다. 기존 연구가 단순히 2차원의 고정된 공간을 한정적으로 이용했다면 이번 연구는 고정된 공간을 인위적으로 조절함으로써 그동안 존재하지 않던 좁은 공간을 3차원적으로 구현한 것이다. 이 기술을 이용하면 냉각이나 건조 등의 추가 공정 없이도 유기액정재료를 금속 결정상에 버금가는 배열로 3차원 공간에 균일하게 제어할 수 있다. 이를 통해 새로운 개념의 액정 기반 3차원 나노패터닝 기법을 개발할 수 있고, 전기 및 자기장에 민감하게 반응하는 액정 소재의 고유 성질과 융합하면 고효율의 광전자 소자 개발에 기여할 수 있다. 또한 현재 디스플레이 및 반도체에 사용되는 단순한 선과 면 형태의 2차원 패터닝을 탈피해 고차원 구조 중 가장 구현이 어렵다는 나선 형태도 쉽게 제조가 가능하다. 이를 통해 향후 카이랄 센서, 차광소재, 분리막 등 광범위한 분야에 응용할 수 있다. 연구팀은 이번 연구에 대해 “유동적인 액정소재의 배향, 배열 정보를 3차원 공간에 완벽하게 제어하는 데 성공했다”며 “액정 물질 뿐 아니라 다양한 유기 분자로 구성된 나노 구조체를 한정된 공간과 재료의 상호작용을 이용해 손쉽게 제어할 수 있는 기술이다”고 말했다. 윤 교수는 “이번에 개발한 원천기술을 이용하면 현재 사용되는 2차원적 광식각 공정(Photolithography)에 비해 10배 이상 제작 과정을 간소화시킬 수 있다”며 “현재 기술로 구현이 어려웠던 복잡한 구조를 최초로 만듦으로써 반도체, LCD 등 관련 분야에서 신 성장 동력을 창출할 수 있을 것이다”고 말했다. 이번 연구는 미래창조과학부, 교육부와 더불어 한국연구재단이 추진하는 미래유망융합기술파이오니어 사업과 글로벌연구네트워크 지원사업의 일환으로 수행됐다. □ 그림 설명 그림1. 게스트 액정 도입 전 후 사진 및 모식도 그림2. 결정화된 액정구조체 형성 원리 모식도
2017.02.14
조회수 14691
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1