본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%84%A4%EC%9D%B4%EC%B2%98+%EC%9D%BC%EB%A0%89%ED%8A%B8%EB%A1%9C%EB%8B%89%EC%8A%A4
최신순
조회순
신경신호 모사를 통한 인공 감각 시스템 개발
우리 대학 바이오및뇌공학과 박성준 교수 연구팀이 고려대학교 천성우 교수, 한양대학교 김종석 박사 공동 연구팀과 함께 인간 피부-신경 모사형 인공 감각 인터페이스 시스템을 개발했다고 12일 밝혔다. 이번 연구 결과는 국제 학술지 `네이처 일렉트로닉스(Nature Electronics)'에 2021년 6월 3일 字로 출판됐다. (논문명: Artificial Neural Tactile Sensing System) 가상/증강 현실, 메타버스, 화상 환자를 위한 인공피부, 로봇형 의수/의족 등에 사용될 수 있는 인공 감각 시스템은, 구현해야 할 원리와 그 시스템의 복잡성 때문에 실제 감각기관처럼 만들기 어려운 상황이었다. 특히 사람은 다양한 유형의 촉각 수용기를 통해 (압력, 진동 등) 정보를 조합하여 촉각을 감지하므로, 완벽한 인공 감각 시스템의 구현은 더욱 어려울 수 밖에 없다. 연구팀은 문제 해결을 위해 나노입자 기반의 복합 촉각 센서를 제작하고, 이를 실제 신경 패턴에 기반한 신호 변환 시스템과 연결하는 방법을 사용하였다. 이 두 가지 기술의 조합을 통해 연구팀은 인간의 촉각 인식 프로세스를 최대로 모방하는 인공 감각 인터페이스 시스템을 구현하는데 성공했다. 연구팀은 우선 압전재료 및 압전 저항성 재료의 조합으로 이루어진 전자 피부를 제작했다. 이 센서는 나노입자의 적절한 조합을 통해 피부 내의 압력을 감지하는 늦은 순응 기계적 수용기(SA mechanoreceptor)와 진동을 감지하는 빠른 순응 기계적 수용기(FA mechanoreceptor)를 동시에 모사할 수 있다는 특징을 가지고 있다. 해당 센서를 통해 생성된 전위는, 연구팀이 제작한 회로 시스템을 통해 실제 감각 신호와 같은 형태의 패턴으로 변환된다. 이때 생체 내 상황을 최대한 모사하기 위해, 실제 감각신경을 추출, 다양한 감각에 의한 신호를 측정하여 함수화하는 방법이 사용됐다. 해당 시스템을 동물 모델에 적용한 결과, 연구팀은 인공 감각 시스템에서 발생한 신호가 생체 내에서 왜곡 없이 전달되며, 근육 반사 작용 등 생체 감각 관련 현상들을 구현할 수 있음을 확인했다. 또한 연구팀은 지문 구조로 만든 감각 시스템을 20여 종의 직물과 접촉함으로써, 딥 러닝 기법을 통해 직물의 질감을 99% 이상 분류할 수 있을 뿐만 아니라 학습된 신호를 기반으로 인간과 동일하게 예측할 수 있음을 보여줬다. 박성준 교수는 "이번 연구는 실제 신경 신호의 패턴 학습을 바탕으로 한 인간 모사형 감각 시스템을 세계 최초로 구현했다는 데 의의가 있다. 해당 연구를 통해 향후 더욱 현실적인 감각 구현이 가능할 뿐만 아니라, 연구에 사용된 생체신호 모사 기법이 인체 내 다양한 종류의 타 감각 시스템과 결합될 경우 더욱 큰 시너지를 낼 수 있으리라 기대한다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 신진연구사업, 범부처의료기기개발 사업, 나노소재원천기술개발사업, 차세대 지능형 반도체 개발사업, KK-JRC 스마트 프로젝트, KAIST 글로벌 이니셔티브 프로그램, Post-AI 프로젝트 사업의 지원을 받아 수행됐다.
2021.07.12
조회수 11460
땀 검사로 건강 상태를 진단할 수 있는 전자소자 개발
우리 대학 전기및전자공학부 권경하 교수 연구팀이 성균관대학교 화학공학과 김종욱 박사과정 연구원(지도교수:김태일 교수, 성균관대학교 화학공학/고분자 공학부)과 땀의 체적 유량 및 총 손실을 실시간으로 측정하는 무선 전자 패치를 개발했다고 6일 밝혔다. 이 기술은 미국 노스웨스턴대 존 로저스 교수, 보스턴 소재 웨어리파이(Wearifi)사와 특허 출원 진행 중이며, 해당 연구 결과는 국제 학술지 `네이처 일렉트로닉스(Nature Electronics)'에 지난 3월 말 발표됐다. (논문명 : An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time) 땀은 비침습적으로 수집할 수 있는 생체 유체로, 침습적인 혈액 채취와 비교해 채취하기가 쉽다는 분명한 이점을 제공한다. 이에 일상에서 실시간으로 땀 수집 및 성분 분석을 제공할 수 있는 웨어러블 기술에 대한 수요가 증가하고 있다. 땀과 화학 시약의 변색 반응을 이용해 다양한 생체 지표 수집이 가능하지만, 정확한 측정(발색)을 하려면 땀의 유량과 총 손실을 실시간으로 측정하는 것이 핵심적으로 요구된다. 이에 연구팀은 땀의 정량적 속도 및 체적 측정이 가능한 웨어러블 무선 전자 패치를 개발했고, 변색 반응을 이용해 땀 성분 분석이 가능한 미세 유체 시스템과 통합했다. 그 결과, 연구팀은 땀 내 염화물, 포도당 및 크레아틴 농도, 수소이온지수(pH) 및 체적 유량을 동시에 측정하는 데 최초로 성공했다. 측정한 지표는 낭포성 섬유증, 당뇨병, 신장 기능 장애, 대사성 알칼리증 진단 등에 활용할 수 있다. 연구팀은 땀이 수집되는 짧고 정교한 미세 유체 채널 외벽에 저전력 열원을 배치해 채널을 통과하는 땀과 열 교환을 유도했다. 땀의 유속이 증가함에 따라 열원의 하류와 상류의 온도 차이가 증가하는 것에 착안, 상·하류 온도 차이와 땀의 배출 속도 간의 정확한 관계를 규명했다. 그 결과, 생리학적으로 유의미하다고 인정되는 0~5마이크로리터/분(μl/min) 범위의 땀 속도를 정확하게 측정하는 데 성공했다. 웨어러블 패치로 측정한 데이터는 블루투스 통신이 가능한 스마트폰 앱을 통해 실시간 확인이 가능하다. 이 패치는 미세 유체 채널을 통과하는 땀과 전자 회로가 완전히 분리되어, 기존 유속 측정 기기들의 유체와의 접촉으로 인한 부식 및 노후화에 취약하다는 단점을 극복했다. 또한, 얇고 유연한 회로 기판 인쇄 기법과 신축성 있는 실리콘 봉합 기술을 접목해 다양한 굴곡을 가진 피부 위에 편안하게 부착할 수 있도록 제작됐다. 땀 배출로 인한 피부 온도 변화를 실시간으로 감지하는 센서도 부착돼 있어 다양한 응용 분야에서 활용이 기대된다. 권경하 교수는 "개발된 무선 전자 패치는 개인별 수분 보충 전략, 탈수 증세 감지 및 기타 건강 관리에 폭넓게 활용할 수 있다ˮ면서 "피부 표면 근처의 혈관에서 혈류 속도를 측정하거나, 약물의 방출 속도를 실시간으로 측정해 정확한 투여량을 계산하는 등 체계화된 약물 전달 시스템에도 활용할 수 있을 것ˮ이라고 말했다. 한편, 이번 연구는 한국연구재단의 뇌과학원천기술개발사업의 지원을 받아 수행됐다.
2021.05.06
조회수 27006
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1