본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%8B%A8%EB%B6%84%EC%9E%90
최신순
조회순
알츠하이머 발병 과정을 관찰하다
퇴행성 질환을 유발하는 아밀로이드 섬유 단백질의 초기 불안정한 움직임과 같은 생명 현상을 분자 수준에서 실시간 관찰이 가능한 기술이 개발되었다. 이를 통해 알츠하이머나 파킨슨 병과 같은 퇴행성 질환의 발병 과정에 대한 실마리를 제공할 수 있을 것으로 기대된다. 우리 대학 신소재공학과 육종민 교수 연구팀이 한국기초과학지원연구원, 포항산업과학연구원, 성균관대학교 약학대학 연구팀과 함께 그래핀을 이용해 알츠하이머 질병을 유발한다고 알려진 아밀로이드 섬유 단백질의 실시간 거동을 관찰할 수 있는 새로운 단분자 관찰 기술(single-molecule technique)을 개발했다고 30일 밝혔다. 단분자 관찰 기술은 단일 분자 수준에서 발생하는 현상을 관찰할 수 있는 기법을 말한다. 생체 과정에서 수반되는 단백질 간의 상호작용, 접힘, 조립 과정 등을 이해하는 데 핵심적인 기술이다. 현재까지 단분자 관찰 기술로는 특정 분자를 식별하기 위한 형광 현미경을 이용해 관찰하거나, 단백질을 급속 냉동시켜 움직임을 고정해 분자 구조를 해석하는 초저온 전자현미경 기법이 활용 돼왔다. 하지만, 자연 그대로의 단백질을 특별한 전처리 없이 분자 단위에서 실시간으로 관찰할 수 있는 기술은 여전히 부재한 상황이었다. 최근 이에 대한 대안으로 물질을 얼리지 않고 상온 상태에서 관찰하는 액상 전자현미경 기술이 최근 주목을 받고 있다. 이 기술은 얇은 투과막을 이용해 액체를 감싸 전자현미경 내에서 물질의 변화를 관찰할 수 있는 기술이지만, 두꺼운 투과 막에 의한 분해능 저하와 전자빔에 의한 단백질 변성은 해결해야 하는 숙제였다. 육종민 교수 연구팀은 차세대 소재로 주목받고 있는 그래핀을 이용해 막에 의한 분해능 저하와 전자빔에 의한 단백질 변성 문제를 해결하며, 단백질의 거동을 실시간 관찰할 수 있는 단분자 그래핀 액상 셀 전자현미경 기술을 개발했다. [그림 1] 이번 연구에서 투과 막으로 이용한 그래핀은 원자 단위의 두께를 가지고 있어 분자 수준 관찰을 가능하게 할 뿐만 아니라, 전자빔에 의한 단백질의 산화를 방지하는 산화 방지 역할을 해 기존 대비 40배 가량 변성을 억제해 단백질의 거동을 실시간으로 관찰할 수 있게 했다. 연구팀은 개발한 전자현미경 기술을 활용해, 알츠하이머 질병을 유발한다고 알려진 아밀로이드 베타 섬유의 초기 성장 과정에서 발현되는 분자 불안정성을 세계 최초로 관찰했다. [그림 2] 이 전자현미경 기술은 온전한 단백질의 다양한 거동들을 분자 수준에서 관찰을 가능하게 하므로, 코로나19와 같은 바이러스성 단백질의 감염 과정, 퇴행성 질환을 일으키는 아밀로이드성 단백질의 섬유화/응집 거동 등과 같이 단백질의 상호작용에 의한 생명 현상을 이해하는 데 활용될 수 있을 것으로 기대된다. 육 교수는 "현미경 기술의 발전은 생명과학 및 공학 기술 발전의 토대가 되는 것으로, 분자 단위의 현상을 관찰할 수 있다면 단백질들의 상호작용을 이해하고 조절할 수 있는 실마리를 제공할 수 있으며, 이를 통해 알츠하이머와 같은 퇴행성 질환의 신약 개발에 도움을 줄 수 있을 것으로 기대한다ˮ 라고 말했다. 우리 대학 신소재공학과 졸업생 박정재 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)' 지난 11월 온라인으로 발표됐다. (논문명 : Single-Molecule Graphene Liquid Cell Electron Microscopy for Instability of Intermediate Amyloid Fibrils). 이번 연구는 한국연구재단의 중견연구자지원사업(MIST) (NRF-2022R1A2C2008929)과 나노 및 소재 기술개발사업(MIST)(NRF-2021M3H4A6A02050365)의 지원을 받아 수행됐다.
2024.01.30
조회수 4029
이정용 교수, 유기고분자-양자점 기반 하이브리드 태양전지 개발
〈 이정용 교수 〉 우리 대학 EEWS 대학원 이정용 교수 연구팀과 캐나다 토론토 대학교 전기 및 컴퓨터 공학부 테드 사전트(Ted Sargent) 교수 공동 연구팀이 유기 단분자 물질 도입을 통한 고효율, 고 안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다. 연구팀이 개발한 유기 고분자-양자점 하이브리드 태양전지는 단순 성능 개선을 넘어 기존의 구조에서 성능이 제한된 문제점을 해결할 수 있는 구체적인 방안을 제시하고, 차세대 에너지원으로써 하이브리드 태양전지에 적용할 수 있을 것으로 기대된다. 백세웅, 전선홍 박사, 김병수 박사과정 및 앤드류 프로페(Andrew H. Proppe) 박사가 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 에너지(Nature Energy)’ 11월 11일 자 온라인판에 게재됐다. (논문명: Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules) 높은 기계적 특성 및 흡광 계수를 갖는 유기 고분자와 근적외선 영역을 흡수할 수 있는 콜로이달 양자점을 이용해 제작되는 하이브리드 태양전지는 용액공정으로 제작할 수 있고 두 물질의 장점을 모두 취할 수 있다는 점에서 많은 관심을 받아왔다. 하지만 유기 고분자-양자점 기반의 하이브리드 구조는 낮은 광전변환 효율과 안정성 측면에서 기존의 차세대 태양전지들과 경쟁하기에 부족한 점이 있다. 낮은 전하추출 능력과 그로 인해 발생하는 재결합 문제로 인해 최근까지도 10% 이하의 낮은 광전변환 효율에 머무르는 하이브리드 태양전지의 성능 개선이 필요한 실정이다. 연구팀은 문제 해결을 위해 고분자와 양자점의 매개체 역할을 할 수 있는 새 유기 단분자 구조를 도입했다. 이렇게 유기 단분자 매개체 도입된 유기 고분자-양자점 하이브리드 구조는 기존의 구조보다 다양한 강점을 가진다. 우선 기존의 유기 고분자에서 생성된 엑시톤을 원활하게 추출할 수 있으며, 상호 보완적인 흡광 대역이 형성돼 추가적인 전류 향상을 얻을 수 있고, 계단형 에너지 레벨을 형성해 에너지 및 전하를 효과적으로 운반할 수 있다. 이러한 강점을 통해 연구팀은 13.1%의 광전변환 효율을 달성했으며, 이는 기존의 유기 고분자와 양자점을 이용하는 하이브리드 태양전지보다 30% 이상 높은 효율이다. 그뿐만 아니라 제작 후 약 1천 500시간 이후에도 초기 효율의 90% 성능을 유지했으며, 최대전력조건에서 약 150시간 이후에도 초기 효율의 80% 이상의 성능을 유지했다. 이 교수는 “단분자를 도입해 기존의 하이브리드 구조의 고질적인 한계를 극복하고 고효율의 차세대 태양전지를 구현했다”라며 “개발한 고효율 태양전지는 최근 주목받고 있는 웨어러블 전자기기를 넘어서 모바일, IoT, 드론 및 4차산업에 적용 가능한 차세대 에너지 동력원으로써 주목받게 될 것이다”라고 말했다. 이 연구는 한국연구재단 중견연구자지원사업, 기후변화대응기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 새롭게 제시한 하이브리드 소재 구조의 작동 원리
2019.11.19
조회수 13198
이정용 교수, 고효율의 콜로이달 양자점 태양전지 기술 개발
〈 이정용 교수, 이상훈 박사과정 〉 우리 대학 EEWS 대학원 이정용 교수 연구팀이 산소와 수분에 저항성을 갖는 박막을 이용해 고성능, 고안정성의 양자점 태양전지 제작 기술을 개발했다. 백세웅 박사, 이상훈 박사과정이 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘에너지&인바이러멘탈 사이언스’ 5월 10일자 온라인 판에 게재됐다. (논문명 : A hydro/oxo-phobic top hole-selective layer for efficient and stable colloidal quantum dot solar cells) 콜로이달 양자점 태양전지는 매우 가볍고 유연하며 근적외선 영역까지 흡수하는 특성 때문에 차세대 전자소자의 에너지 소재로 주목받고 있다. 최근 변환효율이 향상되면서 다양한 상업적 응용 가능성이 높아지고 있지만 아직까지 효율과 안정성, 비용 측면에서 기존의 상업화된 태양전지에 비해 경쟁력이 부족했다. 연구팀은 비정질의 단분자 박막이 산소 및 수분에 높은 저항성을 갖는 것에 주목해 이를 양자점 태양전지의 외부 전극 쪽 정공선택층으로 활용하는 기술을 개발했다. 산소 및 수분에 저항성이 높은 막을 외부 전극 쪽에 활용하면 공기 중에 노출됐을 때 산소나 수분의 침투를 효과적으로 막아 양자점 태양전지소자의 안정성을 크게 향상시킬 수 있다. 특히 이 단분자 박막은 유기 반도체 증착을 통해 전기전도도를 크게 향상시킬 수 있어 단순한 배리어 층이 아닌 태양전지에서 생성된 정공(正孔)을 효과적으로 전달하는 역할도 수행할 수 있다. 연구팀의 기술은 다양한 장점을 갖는다. 우선 진공증착 방식을 이용하기 때문에 소자 종류와 상관없이 어떠한 박막소자에도 응용 가능하다. 또한 두께를 자유롭게 조절할 수 있어 박막이 갖는 산소 및 수분의 차단 특성을 극대화할 수 있다. 또한 양자점 층에서 생성된 정공을 전극까지 효과적으로 전달할 수 있고 비싼 금 전극을 성능 감소 없이 저렴한 은 전극으로 대체할 수 있기 때문에 소자의 생산비용을 크게 낮출 수 있다. 연구팀은 이 기술로 고성능 및 고안정성 양자점 태양전지를 제작하는데 성공했다. 이는 기존의 금 전극을 사용해 제작한 고효율 양자점 태양전지와 비슷한 효율을 가진다. 연구팀은 단분자 박막을 이용한 양자점 태양전지를 제작해 약 11.7%의 최고효율을 달성했고, 산소 및 수분 저항성을 확보해 소자를 공기 중에서 보관할 시 약 1년이 지나도 초기 효율의 90% 이상을 유지함을 확인했다. 이 교수는 “양자점 태양전지 뿐 아니라 양자점 발광소자, 유기 전자소자, 페로브스카이트 소자 등 다양한 분야에 적용이 가능한 기술이다”며 “저렴한 가격에 고효율의 양자점 태양전지를 제작해 상용화를 앞당길 수 있는 원천기술이 될 것으로 기대한다”고 말했다. 이 연구는 한국연구재단 기초연구사업, 기후변화대응기술개발사업, KAIST 기후변화연구허브 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 비정질 단분자 박막을 3D 이미지로 묘사한 개념도 그림2. 개발한 기술에 대한 개념도와 제작된 양자점 태양전지 성능 그래프
2018.06.07
조회수 12870
김호민 교수, 패혈증 원인 물질의 생체 내 메커니즘 최초 발견
우리 대학 의과학대학원 김호민 교수와 연세대학교 윤태영 교수 공동 연구팀이 우리 몸이 패혈증의 원인 물질인 박테리아 내독소를 어떻게 받아들이고 전달하는지 규명했다. 이를 통해 박테리아 내독소가 생체 내 단백질로 전달되는 분자 원리를 밝혀냄으로써 내독소가 전달되는 길목을 차단해 패혈증을 치료할 수 있는 새로운 가능성이 제시됐다. 패혈증은 감염에 의해서 과도하게 활성화된 면역반응에 따른 전신성 염증반응 증후군이다. 이 연구는 면역학 분야 국제 학술지이며, 셀(Cell) 자매지인‘이뮤니티 (Immunity)’12월 13일자에 게재되었다. 그람 음성균 세포외막에 존재하는 내독소는 생체 내 단백질을 통해 면역세포 표면의 세포수용체로 전달돼 선천성 면역 반응을 활성화시킨다. 감염에 의한 혈액 내 내독소 다량 유입은 고열, 혈압저하, 장기손상 등 과도한 염증반응의 결과인 패혈증으로 이어질 수 있지만, 내독소 인식 및 전달 관련 구체적인 분자 원리가 밝혀져 있지 않아 패혈증 치료제 개발에 한계가 있었다. 연구팀은 문제 해결을 위해 단분자 형광기법과 바이오 투과전자현미경을 활용했다. 마이셀(Micelle) 형태로 존재하는 내독소 표면에 막대 모양의 LBP가 결합하여 내독소를 인식하고, 여기에 CD14가 빠르게 결합해 내독소 한 분자를 가져간 후 면역세포 수용체인 TLR4-MD2와의 상호결합을 통해 건네주는 내독소 인식 및 전달 원리를 확인했다. 박테리아 내독소와 정제된 LBP 단백질을 혼합해 바이오투과전자현미경으로 사진을 찍은 후 각각의 분자의 모양을 컴퓨터를 활용한 이미지 프로세싱을 통해 분석함으로써 내독소와 결합한 LBP 단백질 구조를 최초로 규명했다. 특히 막대모양의 LBP 단백질이 그들의 N-도메인 끝을 통해 내독소 마이셀 표면에 결합함으로써 박테리아 내독소만을 특이적으로 인식하는 것을 발견했다. 연구팀은 박테리아 내독소에 형광을 부착시킨 후 내독소 항체를 활용해 유리슬라이드 표면에 코팅시키고, LBP, CD14, TLR4-MD2 단백질들을 흘려주면서 박테리아 내독소, LBP, CD14, TLR4-MD2 분자 하나하나의 동적인 움직임을 실시간으로 관찰하는 단분자 형광 시스템을 최초로 구축했다. 이를 통해 박테리아 내독소 표면에 결합한 LBP 단백질로부터 CD14 단백질이 내독소 한 분자만을 반복적으로 가져간 후 빠르게 TLR4-MD2로 전달함으로써 선천성 면역의 세포신호전달을 활성화 시키는 분자메커니즘을 최초로 규명했다. 또한 마우스 면역세포인 수지상세포를 활용하여 첨단 생물물리학적인 기법을 통해 제시한 분자메커니즘이 생체 내에서 내독소를 인식하여 면역반응을 유발하는 핵심 메커니즘을 검증했다. 기존의 실험방법으로 접근이 어려웠던 LBP, CD14, TLR4-MD2 단백질들 간의 동적인 상호작용을 최신 첨단 실험기법을 통하여 분자수준에서 규명함으로써 생체 내 내독소 인식 및 전달메커니즘을 규명했다. 연구 방법 및 결과는 박테리아 감염에 의한 선천성 면역 연구에 새로운 방향을 제시할 것이며 특히 이 연구에서 규명한 분자적, 구조적 지식들은 패혈증 발병메커니즘 연구 및 치료제 개발에 적극 활용될 수 있을 것으로 기대된다. 김호민 교수는“박테리아 내독소가 생체 내 단백질들의 동적인 상호작용에 의해 면역세포로 전달되는 일련의 과정들을 분자수준에서 최초로 밝힌 것이다”며 “박테리아 내독소 인식 및 전달메커니즘 이해를 통하여 선천성 면역 유발 메커니즘 이해뿐만 아니라 패혈증 예방 및 치료제 개발에 기여할 것으로 기대된다”라고 말했다. 이번 연구는 미래창조과학부, 한국연구재단 기초연구사업(개인연구, 집단연구), IBS 나노의학연구단의 지원으로 수행됐다. □ 그림 설명 그림1. 생체 내 박테리아 내독소 전달 메커니즘
2016.12.27
조회수 16935
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1