-
빛을 완전히 조절할 수 있는 메타렌즈 개발
우리 대학 신소재공학과 신종화 교수 연구팀이 빛의 세 가지 주요 특성인 세기, 위상, 편광을 동시에 모두 조절할 수 있는 유니버설 메타표면(universal metasurface)을 개발했다고 2일 밝혔다.
단일 소자로 빛의 세기, 위상, 편광을 모두 자유로이 조절할 수 있는 기술은 갈릴레이가 망원경으로 목성의 위성을 관측했던 광학 분야의 시초부터 제임스웹 망원경으로 130억 년 전 우주를 볼 수 있게 된 현재까지 풀리지 않는 난제로 남아있었다. 최근, 마이크로미터 이하 크기의 인공적인 구조체들을 유리 등 기존 소재 표면을 따라 배열해 빛의 특성을 높은 자유도로 조절할 수 있는 메타표면이 이러한 난제를 해결할 수 있는 기술이 될 수 있다는 기대감으로 관련 연구가 세계 여러 대학과 연구소, 기업에서 경쟁적으로 이뤄지고 있다.
이러한 메타표면은 현재 안경 두께의 천 분의 일인 수 마이크로미터 수준의 얇은 두께만으로도 렌즈의 역할을 할 수 있을 뿐만 아니라, 편광판, 컬러필터 등 기존 다른 광학 부품들의 기능도 동시에 수행할 가능성을 갖고 있어서 여러 종류의 광학필름이 필수적으로 들어가는 OLED 등 현재 상용 디스플레이의 두께를 현저히 줄이고 공정을 단순화시키거나 동영상 홀로그램, 증강현실(AR) 글래스, 라이다(LiDAR) 등의 새로운 응용의 광학 부품들에도 널리 적용될 수 있는 다재다능한 기술로 관심을 받고 있다.
하지만, 현재까지 보고된 메타표면들은 여전히 특정 색의 빛이 가지는 세 가지 특성 중 일부분만을 동시에 조절(예: 위상과 편광 또는 위상과 세기 등)할 수 있어, 하나의 소자로 세 특성을 완전히 조절하는 문제는 해결되지 못한 숙제로 남아있었다.
연구팀은 행렬과 관련된 수학적 원리에 착안해, 밀접한 두 층으로 이뤄진 유전체 메타표면이 빛의 세 가지 주요한 특성을 완벽히 조절할 수 있음을 이론적으로 밝히고, 이를 실험적으로 규명했다. 특히, 기존에 단일 소자로 불가능했던 벡터 홀로그램들을 제안하고 최초로 구현하는 데 성공했다. 학문적으로는 메타표면의 편광 선택적인 특성을 통해 맥스웰 방정식을 만족하는 두 가지 독립적인 임의의 3차원 전자기장 분포를 구현하는 방법을 최초로 보였다는 점에서 이번 연구는 큰 의의를 갖는다.
또한, 연구진은 유니버설 메타표면과 일반 렌즈의 조합만으로 임의의 편광 선택적인 선형 광학계의 구현이 가능함을 이론적으로 입증했는데, 이는 푸리에 변환 등을 포함한 복잡한 수학적 연산이나 데이터 처리를 광학적으로 간단하게 구현할 수 있음을 의미한다. 한 가지 예시로 연구팀은 확률론적 양자 CNOT 게이트 배열을 유니버설 메타표면과 렌즈만을 사용해 만들 수 있음을 보였으며, 이러한 원리는 양자 광학 뿐만 아니라, 광 통신, 광 신경망을 이용한 기계학습 기반 안면인식 등 여러 분야에서 활용될 수 있을 것으로 기대된다.
연구진은 "이번 연구를 통해 광학 분야의 오랜 난제였던 빛의 세기, 위상, 편광의 완전한 조절을 해결했을 뿐만 아니라, 이를 바탕으로 모든 편광 선택적인 선형 광학계 구현이 이론적으로 가능함을 밝혔다ˮ며, 이어 "이번 연구에서 제안한 메타표면의 가능성을 활용하여 기존 한계를 극복한 응용 광소자를 적극적으로 개발할 계획ˮ이라고 언급했다.
신소재공학과 장태용 박사와 정준교 박사과정생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)' 지난 11월 3일 字 출판됐다. (논문명 : Universal Metasurfaces for Complete Linear Control of Coherent Light Transmission).
한편 이번 연구는 한국연구재단 과학기술분야 기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2022.12.02
조회수 6978
-
스마트폰으로 전시물을 투시한다, 매직렌즈 증강현실 '원더스코프' 개발
우리 대학 산업디자인학과 이우훈 교수 연구팀과 전산학부 이기혁 교수 연구팀이 사물 표면에서 그 내부를 투시하게 하는 새로운 증강현실 장치 원더스코프(WonderScope)를 개발했다고 13일 밝혔다. 스마트폰에 원더스코프를 장착하고 블루투스로 연결한 다음 앱을 켜면 매직 렌즈처럼 전시물 내부를 투시할 수 있다.
요즘 과학관을 방문하면 스마트폰이나 태블릿으로 증강현실 앱을 종종 체험할 수 있다. 앱은 실제 전시물에 디지털 정보를 추가함으로써 색다른 관람 경험을 제공한다. 이때 관람객들은 전시물과 어느 정도 거리를 두고 모바일 화면을 바라보아야 한다. 따라서 전시물 자체보다는 화면 속 디지털 콘텐츠에 집중하는 현상이 벌어지곤 한다. 전시물과 모바일 기기 사이의 거리, 그리고 그사이에서의 주의 분산 때문에 증강현실 앱은 전시물로부터 오히려 관람객을 멀어지게 하는 원인이 되기도 한다. 이 문제를 해결하기 위해 전시물 표면에서 내부를 투시하는 매직 렌즈 증강현실이 필요한 것이다.
이를 위해 스마트폰은 전시물 표면 어디에 위치하는지 파악해야 한다. 통상 스마트폰 위치 파악을 위해 전시물 내부나 외부에 인식 장치를 추가로 설치하거나, 전시물 표면에 특수 패턴을 인쇄해야 한다. 이 경우 전시물 외관이 복잡해지고 공간 구성에 많은 제약이 있어 현실적으로 전시물 표면에서의 매직 렌즈 증강현실 구현은 쉽지 않다.
원더스코프는 전시물 표면에서 스마트폰의 위치를 휠씬 실용적인 방법으로 파악한다. 우선 전시물 표면에 부착된 작은 RFID 태그를 읽어 그 위치를 파악하고, 두 가지 광학적 변위 센서와 가속도 센서를 기반으로 상대적 이동량을 더함으로써 움직이는 스마트폰의 위치를 계산한다. 연구팀은 스마트폰의 높이와 전시물 표면 특성도 감안해 최대한 정확하게 위치를 계산하도록 연구했다. 과학관 전시물에 RFID 태그를 부착하거나 내장시키면 관람객들이 스마트폰으로 매직 렌즈와 같은 증강현실 효과를 쉽게 체험할 수 있도록 한 것이다.
원더스코프의 폭넓은 활용을 위해 다양한 전시물 표면에서 위치 파악이 가능해야 한다. 이를 위하여 원더스코프는 두 가지 상호보완적인 특성의 광학 변위 센서 출력과 가속도 센서 출력을 같이 이용함으로써 종이, 돌, 나무, 플라스틱, 아크릴, 유리 등 다양한 재질은 물론 요철이나 물리적 패턴이 있는 표면에서도 안정적인 위치 파악이 가능하다. 이러한 특성과 함께 원더스코프는 표면에서 4cm 정도 떨어진 범위에서도 위치 파악이 가능해 전시물 표면 근처에서의 간단한 3차원 상호작용 구현도 가능하다.
연구팀은 범용 가상현실(VR) 및 게임 엔진인 유니티(Unity)를 활용해 스마트폰 앱을 쉽게 제작할 수 있도록 다양한 사례 프로젝트 탬플릿과 원더스코프 활용지원도구를 개발했다. 원더스코프는 안드로이드 운영체제를 갖는 스마트워치, 스마트폰, 태블릿과 연동해 사용할 수 있어 전시물에 다양한 형태로 적용 가능하다.
연구팀은 과학기술정보통신부 과학문화전시서비스 역량강화지원사업의 지원을 받아 원더스코프를 개발했다. 원더스코프는 2020년 10월 27일부터 2021년 2월 28일까지 지질박물관에서 개최된 `그곳에 화산이 있었다' 특별전에 지하 화산활동과 화산암 내부를 관찰하는 도구로 활용됐다. 2021년 9월 28일부터 10월 3일까지 국립중앙과학관에서 열린 `청동거울, 과학을 비추다' 특별전에서는 정문경 표면 관찰 도구로 활용됐고, 2022년 8월 2일부터 10월 3일까지 `달 탐사 특별전' 에서는 달착륙선 체험 콘텐츠를 전시했다. 연구팀은 다년간 현장 실증을 통해 원더스코프의 성능과 사용성을 향상했다.
연구팀은 올해 8월 8일부터 11일까지 캐나다 밴쿠버에서 열린 컴퓨터 그래픽 및 상호작용기술 학회인 ACM 시그래프(SIGGRAPH)의 신기술전시회(Emerging Technologies)에서 원더스코프를 데모 전시했다. 전 세계 최신 상호작용기술이 소개되는 이 학회에서 연구팀은 우수전시상(Best in show honorable mention)을 수상했다. 심사위원들은 "원더스코프가 박물관과 같은 전시공간에서 관람객들에게 참여의 즐거움을 제공하는 새로운 기술이 될 것ˮ이라고 평가했다.
원더스코프는 직경 5cm, 높이 4.5cm의 원통형 앱세서리 모듈로서 그 크기가 충분히 작아 스마트폰에 쉽게 부착할 수 있고, 대부분 전시물 안에 문제없이 내장시킬 수 있다. 연구책임자인 산업디자인학과 이우훈 교수는 "원더스코프가 교육은 물론, 상업 전시에서도 다양한 응용이 가능할 것이다ˮ며, "더 나아가 어린이들의 호기심을 자극하는 인터랙티브 교구로도 활용 가능할 것으로 기대한다ˮ라고 설명했다.
원더스코프(WonderScope) 대표 영상 : https://www.youtube.com/watch?v=X2MyAXRt7h4&t=7s
SIGGRAPH E-Tech에서 원더스코프 데모 전시 영상 : https://www.youtube.com/watch?v=c5pRMTIpGf8
국립중앙과학관 달탐사 특별전 (2022.08.02 ~ 2022.10.03) 영상 : https://www.youtube.com/watch?v=cZxwj84TnLM
국립중앙과학관 "청동거울, 과학을 비추다" 특별전 (2021.09.28~2021.10.03) 영상 : https://www.youtube.com/watch?v=T6W19lTt2J8
SIGGRAPH 2022 E-Tech 우수전시상 작품평 : https://s2022.siggraph.org/program/emerging-technologies/
‘디지털 크리에이티비티(Digital Creativity)’ 저널 논문 게재 (2022년, 표지논문) : https://www.tandfonline.com/doi/full/10.1080/14626268.2022.2039208
2022.09.13
조회수 8033
-
해상도 높인 곤충 눈 구조 초박형 카메라 개발
바이오및뇌공학과 정기훈 교수 연구팀이 고해상도 이미징을 위한 곤충 눈 구조의 초박형 카메라를 개발했다. 이 카메라는 독특한 시각 구조를 가진 제노스 페키(Xenos peckii)라는 곤충의 눈을 모사해 개발돼, 상용 카메라보다 더 얇은 렌즈 두께와 넓은 광시야각을 갖는다. 이러한 특징을 이용해 모바일, 감시 및 정찰 장비, 의료영상 기기 등 다양한 소형 카메라가 필요한 분야에 적용 가능할 것으로 기대된다.
김기수 박사과정이 주도한 이번 연구결과는 국제 학술지 ‘빛 : 과학과 응용 (Light : Science & Applications)’ 2월 27일 자 온라인판에 게재됐다. (논문명: 고대비 고해상도 이미징을 위한 생체모사 초박형 카메라, Biologically Inspired Ultrathin Arrayed Camera for High Contrast and High Resolution Imaging)
최근 초소형 및 초박형 스마트 기기의 개발로 소형화된 이미징 시스템의 수요가 커지고 있다. 그러나 기존의 카메라는 물체의 상이 일그러지거나 흐려지는 현상인 수차를 줄이기 위해 다층 렌즈 구조를 활용하기 때문에 렌즈 두께를 감소하는 데 한계가 있다. 또한, 기존의 곤충 눈을 모사한 미세렌즈 배열(Microlens arrays)은 렌즈 사이의 광학 크로스토크(Optical crosstalk)로 인해 해상도가 저해되는 단점이 있다.
연구팀은 문제 해결을 위해 제노스 페키 곤충의 시각 구조를 모사한 렌즈를 제작했고 이를 이미지 센서와 결합해 초박형 카메라를 개발했다. 곤충의 눈은 렌즈와 렌즈 사이의 빛을 차단하는 색소 세포(pigment cells)가 존재해 각 렌즈에서 결상(어떤 물체에서 나온 광선 등이 반사 굴절한 다음 다시 모여 그 물체와 닮은꼴의 상을 만드는 현상)되는 영상들 간의 간섭을 막는다. 이러한 구조는 렌즈들 사이의 광학 크로스토크를 막아 고 대비 및 고해상도 영상을 획득하는 데 도움을 준다.
연구팀은 이러한 광 차단 구조를 포토리소그래피(Photolithography) 공정으로 매우 얇게 제작해 렌즈들 사이의 광학 크로스토크를 효율적으로 차단했다. 렌즈의 두께를 최소화하기 위해 렌즈의 방향을 이미지 센서 방향인 역방향으로 배치했으며, 이를 통해 최종 개발된 카메라 렌즈의 두께는 0.74mm로 이는 10원짜리 동전 절반 정도의 두께이다. 연구팀은 카메라의 원거리에 있는 물체를 모든 렌즈에서 같은 시야각을 통해 동일한 영상을 획득하고, 이 배열 영상들은 해상도를 하나의 이미지로 합성했다. 합성된 영상은 합성 전 단일 채널 영상보다 향상된 해상도를 가짐을 확인했다.
정기훈 교수는 “실질적으로 상용화 가능한 초박형 카메라를 제작하는 방법을 개발했다”라며 “이 카메라는 영상획득이 필요한 장치에 통합돼 장치 소형화에 크게 기여할 것으로 확신한다”라고 말했다.
2020.03.23
조회수 17133
-
정기훈 교수, 곤충 눈 구조 모방한 초박형 카메라 개발
〈 왼쪽부터 장경원 박사과정, 정기훈 교수, 황순홍 박사과정 〉
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 독특한 눈 구조를 가진 곤충인 제노스 페키(Xenos peckii)를 모사한 초박형 디지털카메라를 개발했다.
제노스 페키를 모사해 개발한 초박형 디지털카메라는 기존 이미징 시스템보다 더 얇으면서 상대적으로 넓은 광시야각과 높은 분해능을 갖는다. 감시 및 정찰 장비, 의료용 영상기기, 모바일 등 다양한 소형 이미징 시스템에 적용 가능할 것으로 기대된다.
금동민, 장경원 박사과정이 주도한 이번 연구결과는 국제 학술지 ‘빛 : 과학과 응용(Light : Science & Applications)’ 10월 24일 자에 게재됐다. (논문명: 제노스 페키의 시각기관을 모사한 초박형 디지털카메라, Xenos peckii vision inspires an ultrathin digital camera)
정 교수 연구팀은 자연계에서 발견되는 광학 구조를 모방하는 연구를 꾸준히 진행해 왔다. 반딧불이의 배 마디 구조를 분석해 광효율을 높은 LED 렌즈를 개발한 바 있고, 생체모사를 통한 무반사 기판을 제작하는 등 해당 분야를 선도하고 있다.
최근 전자기기 및 광학기기의 소형화로 초박형 디지털카메라에 대한 수요가 증가하고 있다. 그러나 기존의 카메라 모듈은 광학적 수차를 줄이기 위해 광축을 따라 복수의 렌즈로 구성돼 있어 부피가 매우 크다는 단점이 있다. 이런 모듈을 단순히 크기만 줄여 소형기기에 적용하면 분해능과 감도가 떨어지게 된다.
연구팀은 문제 해결을 위해 곤충인 제노스 페키의 시각구조를 적용한 렌즈를 제작했고 이를 이미지 센서와 결합한 초박형 디지털카메라를 개발했다.
곤충의 겹눈구조는 수백, 수천 개의 오마티디아라 불리는 아주 작은 광학 구조로 이뤄져 있다. 일반적인 겹눈구조는 수백, 수천 개의 오마티디아에서 한 개의 영상을 얻지만, 제노스 페키는 다른 곤충과는 달리 각 오마티디아에서 개별의 영상을 획득할 수 있다. 또한 오마티디아 사이에 빛을 흡수할 수 있는 독특한 구조를 가져 각 영상 간 간섭을 막는다.
연구팀이 개발한 카메라는 2mm 이내의 매우 작은 크기로 제노스 페키의 겹눈구조를 모방해 수십 개의 마이크로프리즘 어레이와 마이크로렌즈 어레이로 구성된다. 마이크로프리즘과 마이크로렌즈가 한 쌍으로 채널을 이루고 있으며 각각의 채널 사이에는 빛을 흡수하는 중합체가 존재하며 각 채널 간 간섭을 막는다.
각각의 채널은 화면의 다른 부분들을 보고 있으며 각 채널에서 관측된 영상들은 영상처리를 통해 하나의 영상으로 복원돼 넓은 광시야각과 높은 분해능을 확보할 수 있다.
정기훈 교수는 “초박형 카메라를 제작하는 새로운 방법을 제시했다”며 “이 연구는 기존의 평면 CMOS 이미지 센서 어레이에 마이크로 카메라를 완전히 장착한 초박형 곤충 눈 카메라의 첫 번째 데모이며 다양한 광학 분야에 큰 영향을 미칠 것으로 확신한다.”라고 말했다.
□ 그림 설명
그림1. (좌) 제노스 페키의 SEM 영상. (우) 형광 염색된 제노스 페키의 시각구조
그림2. (좌) MEMS 공정을 통해 제작된 마이크로프리즘 어레이의 SEM 영상. (우) 완성된 초박형 디지털 카메라의 광학 영상
그림3. (좌) Xenos peckii의 시각기관을 통해 얻은 영상. (우) 초박형 디지털 카메라를 통해 얻은 영상
2018.11.20
조회수 9098
-
우운택 교수, 증강현실 속 캐릭터 실시간 조작기술 개발
〈 우 운 택 교수 〉
우리 대학 KI IT융합연구소 증강현실 연구센터의 우운택 교수(문화기술대학원) 연구팀이 증강현실 안경을 통해 현실공간에 존재하는 가상 객체의 이동경로를 간편하고 자유롭게 설정할 수 있는 기술을 개발했다.
이 기술은 홀로렌즈와 같은 투과형 증강현실 안경을 착용한 사용자가 스마트폰을 이용해 현실공간에서 직관적으로 동물, 식물 등의 가상 객체를 조작하면서 이동경로를 실시간으로 설정 및 변경할 수 있다.
유정민 연구교수가 1저자로 참여한 이번 연구 결과는 한국 인간-컴퓨터 상호작용 학회(HCI)에서 지난 8일에 시연됐고, 관련 논문은 2017년도 국제 인간-컴퓨터 상호작용 학회(HCI International 2017)에서 발표될 예정이다.
기존의 증강현실을 저작하는 과정은 피시(PC) 환경에 특화된 저작 프로그램을 이용하거나 전문적인 프로그래밍 언어로 가상의 객체를 선택하고 조작해야 한다. 따라서 과정이 복잡하고 비용이 상대적으로 많이 소요되는 한계가 있었다.
연구팀은 특수한 입력장치를 사용하는 대신 자체 개발한 앱을 스마트폰에서 구동시켜 홀로렌즈가 부착된 안경형 디스플레이 장치와 연동했다.
이를 통해 3차원 마우스와 같은 입력장치로 사용할 수 있고 증강현실 속 가상 객체를 컴퓨터의 아이콘 옮기듯 쉽게 조정하고 이동할 수 있게 된다.
이 기술은 사용자가 스마트폰의 입력 정보와 내장된 3축 기울기 센서로부터 획득한 스마트폰의 자세 정보를 이용해 가상 객체를 선택 혹은 취소하거나 크기를 조절할 수 있다. 또한 가상 객체의 이동경로를 현실 공간에 바로 설정하거나 수정할 수 있다.
이러한 기능은 현실 공간에서 가상 객체의 이동을 직관적으로 설정할 수 있기 때문에 다양한 동적인 증강현실 환경을 현장에서 즉각적으로 구성할 수 있다.
누구나 쉽게 사용할 수 있는 저작도구는 다양한 증강현실 콘텐츠의 즉각적인 생산과 체험을 가능하게 하고 새로운 증강체험 관련 산업의 형성 및 생태계 구축에 기여할 수 있을 것으로 기대된다.
우 교수는 “이 기술은 스마트 폰만 있으면 누구나 콘텐츠를 현장에서 직관적으로 저작할 수 있다”며 “추가 개발될 증강현실 저작도구를 통해 누구나 포켓몬go 같이 가상 캐릭터와 현실공간이 상호작용하는 환경을 만들 수 있을 것으로 기대한다”고 말했다.
□ 그림 설명
그림1. 증강현실 체험 위한 안경형 디스플레이기반 이동경로 저작 기술의 개념도
그림2. 기술을 활용하여 증강현실 환경을 구성하는 실제 화면
2017.02.16
조회수 12752
-
신기루 현상 착안해 테라헤르츠파 광학렌즈 개발
무더운 여름, 아스팔트 도로에 물웅덩이가 보이다가 가까이 다가가면 사라지고 좀 가다보면 또 물웅덩이가 나타난다. ‘신기루’라고 불리는 이 현상은 지표면 가까운 공기층의 큰 온도차로 인한 공기밀도 변화로 빛이 굴절되기 때문이다.
우리 학교 바이오및뇌공학과 정기훈 교수는 물리학과 안재욱 교수와 신기루 현상에서 착안한 물리적 효과를 이용해 테라헤르츠파 굴절률 분포형 렌즈를 세계 최초로 개발했다.
실리콘 소재를 곡면으로 가공해 만드는 카메라렌즈에 사용되는 기존방식과는 달리 이번에 개발된 렌즈는 평평한 실리콘 웨이퍼를 소재로 반도체 양산공정으로 제작해 비용을 최대 1/100 수준으로 낮출 수 있으며 제작시간도 훨씬 단축시킬 수 있다. 광원 추출효율은 4배 이상 향상시켰다.
테라헤르츠파는 0.1THz~30THz(테라헤르츠, 1조헤르츠) 대역의 전자기파로 가시광선이나 적외선보다 파장이 길어 X선처럼 물체의 내부를 높은 해상도로 정확히 식별할 수 있어 보안검색, 의료영상기술 등 비파괴 검사 도구나 의료용 진단기구의 성능을 획기적으로 향상시킬 수 있을 것으로 전망된다.
그러나 넓은 대역의 주파수 특성으로 인해 손실되는 전자기파의 비율이 높아 테라헤르츠파를 높은 효율로 집중시킬 수 있는 광학소자 개발이 요구됐다.
정 교수 연구팀은 평평한 실리콘에 테라헤르츠파 파장(약 300㎛) 보다 작은 80~120㎛ 크기의 구멍을 반도체 양산방법인 광식각공정으로 만들었다. 렌즈 가장자리로 갈수록 홀 사이즈는 크게 만들었다.
테라헤르츠파를 쪼이자 공기와 실리콘 중 공기 비율이 높은 가장자리는 굴절률이 낮았으며, 상대적으로 공기의 비율이 낮은 가운데는 굴절률이 높았다. 평평한 소재를 광학특성을 공학적으로 설계해 빛을 모으는 볼록렌즈와 같은 기능을 한 것으로 신기루 현상과 같은 물리적 효과와 같다.
이번 연구를 주도한 정기훈 교수는 “자연현상에서 착안해 자연계에 존재하지 않는 다양한 광학특성을 띄는 메타물질을 인공적으로 만든 것”이라며 “물질적 제약으로 인해 다양한 광학소자개발이 더딘 테라헤르츠파 기술 진보에 상당한 도움이 될 것”이라고 연구의의를 밝혔다.
미래창조과학부가 지원하는 한국연구재단의 도약연구자지원사업, 그린나노기술개발사업, 글로벌프론티어사업의 일환으로 수행된 이번 연구는 미국물리협회에서 발간하는 귄위 있는 국제학술지인 ‘어플라이드 피직스 레터(Applied Physics Letter)’에 9월자 특집논문 및 표지논문(제1저자 박상길 박사과정)으로 게재됐다.
그림1. 유전체 메타물질을 이용한 실리콘 굴절률 분포형 렌즈. 머리카락 굵기(80~120µm) 수준의 구멍이 실리콘 기판에 서로 다른 크기로 형성돼 있다.
그림2. 굴절률 분포형 렌즈 원리
그림3. 신기루 현상신기루는 아스팔트 도로 위에서 흔하게 나타나는 대기 굴절 현상이다. 이 현상은 도로면이 물체를 반사하는 것처럼 보이게 하는데 이 때문에 도로면에 물웅덩이가 있는 것처럼 착각하게 된다. 아래 사진에는 멀리서 다가오는 차의 상이 도로면을 통해 보인다. <사진 : 경기북과학고등학교 조영우 선생님 제공>
그림4. 논문표지
2014.09.24
조회수 20109
-
슈퍼렌즈로 초고해상도 2차원 실시간 영상획득 성공
우리 학교 물리학과 박용근·조용훈 교수 공동연구팀은 빛의 회절한계 때문에 광학렌즈로는 볼 수 없었던 100nm(나노미터, 10억분의 1미터) 크기 이미지를 2차원으로 실시간 관찰하는데 성공했다.
이번 연구는 지난해 4월 박 교수 연구팀이 페인트 스프레이를 이용해 기존 광학렌즈보다 3배가량 해상도가 뛰어난 ‘슈퍼렌즈’를 세계 최초로 개발해 초점을 형성한 기술의 후속 연구로 향후 초정밀 반도체 공정이나 세포 내 구조 관찰 등에 응용 가능하다.
빛의 굴절을 이용하는 광학렌즈는 빛의 파장보다 작은 초점을 만들 수 없는 특성(회절한계) 때문에 가시광선 영역에서 200~300nm 이하 크기의 물체를 관찰할 수 없다.
연구팀은 빛의 산란 때문에 소멸하는 고주파 근접장을 산란 물질이 밀집한 나노입자로 구성된 페인트 스프레이를 뿌려 미세한 크기의 이미지 정보를 얻어냈다.
이후 빛을 시간 가역성을 이용해 최초의 산란 형태를 계산해 복구함으로써 회절한계를 넘는 나노 이미지를 구현했다. 복잡한 궤적으로 물체를 투사할 때 피사체의 특정위치에서 피사체가 지나온 궤적에 대해 시간을 되돌리는 방식으로 계산하면 피사체의 처음 위치를 알 수 있는 원리다.
이번 연구를 주도한 박용근 교수는 “개발된 기술은 광학 측정과 제어가 요구되는 모든 분야에서 핵심 기반기술로서 사용될 수 있다”며 “기존의 전자현미경은 세포가 파괴되는 단점이 있었지만 이 기술을 이용하면 세포파괴 없이 초고해상도로 관찰할 수 있다”고 말했다.
연구결과는 물리학분야에서 귄위 있는 국제학술지인 ‘피지컬 리뷰 레터스(Physical Review Letters)’ 9일자 온라인판에 게재됐다.
그림1. 관찰영상
그림2. 산란을 통한 나노 이미징의 원리
2014.09.22
조회수 12396
-
나노 입자 기반 신개념 슈퍼렌즈, 2013 10대 과학기술 뉴스로 선정
박용근 교수
우리 학교 물리학과 박용근·조용훈 교수 공동연구팀이 개발한 "나노 입자 기반의 신개념 슈퍼렌즈" 기술이 한국과학기술단체총연합회가 선정한 "2013년 10대 과학기술 뉴스"로 선정됐다.
이 렌즈는 빛의 산란을 이용해 기존 광학렌즈보다 3배가량 뛰어난 해상도를 갖는다.
빛의 굴절을 이용하는 기존 광학렌즈와 달리, 슈퍼렌즈는 100㎚ 크기의 세포 내 구조와 바이러스 등을 볼 수 있다. 또 광통신과 최첨단 반도체 공정 등에 응용 가능하다.
이밖에도 나로호 발사 성공, 뇌세포막을 제거해 뇌를 투명하게 보는 기술과 암 전이를 차단하는 신물질 개발, 초광각 곤충 눈 카메라 기술 개발 등이 올해의 연구업적으로 인정받았다.
2013 10대 과학기술 뉴스는 3차례의 위원회 심의와 지난달 21일부터 이달 4일까지 14일 간 5437명의 온라인투표 참여를 통해 선정됐다.
2013.12.11
조회수 12780
-
반딧불이 모방한 고효율 LED 기술 개발
정기훈 교수
- 반딧불이 모방한 자연모사 연구로 반사 최소화 한 고효율 LED 개발 -- 미국 국립과학원회보지(PNAS) 10월 29일자 온라인 판 게재 -
자기 스스로 빛을 내는 반딧불이를 모방한 고효율 LED 원천기술이 개발됐다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 반딧불이 발광기관 외피에 있는 나노구조를 세계 최초로 모방해 발광효율이 높은 LED 렌즈를 개발했다.
이번에 개발된 기술은 기존에 렌즈의 반사를 방지하기 위해 값비싼 반사방지 코팅을 추가로 처리한 것과는 달리, 렌즈 제작 시 생체모사 나노구조를 주형에서 한 번에 만들어 보다 저렴한 LED를 만들 수 있을 것으로 기대된다.
이와 함께 무반사효과(antireflection)를 내기 위해 모방한 나노구조를 최적화해 발광효율 향상이 기존 반사방지 코팅에 상응하게 만들어, 앞으로 스마트폰, TV, 자동차, 의료기기, 실내외 조명 등에 널리 적용될 것으로 전망된다.
무반사구조(antireflective structures)는 빛의 효율을 향상시키기 위한 대표적인 방법으로 많은 분야에 활용돼 왔다. 그러나 이 구조는 평판에만 국한돼 있어 LED 렌즈와 같은 곡면에 만드는 것은 많은 어려움이 있었다.
정 교수 연구팀은 3차원 미세몰딩 공정을 활용해 이를 해결했다.
연구팀은 실리콘 산화막 위에 나노입자를 단일 층으로 형성하고 식각공정을 통해 나노구조를 형성했다.이후 나노구조를 PDMS(폴리다이메틸실록세인, polydimethylsiloxane) 막에 전사시키고, 이 막에 음압을 가해 곡률을 형성한 다음 자외선경화 고분자를 부은 후 굳혀 반딧불이와 유사한 구조의 렌즈를 만들어 내는 데 성공했다.
이번 기술은 세계 최초로 무반사구조가 형성된 반구형 고효율 LED 렌즈를 개발한 것으로, 이 렌즈는 기존에 사용되는 무반사코팅(antireflection coating)에 상응하는 효과를 나타냈다.
정기훈 교수는 “이 기술은 세계 최초로 생물발광기관을 생체 모사한 기술이라는 것에 의의가 있다”며 “생체모사 기술을 활용한 고효율 LED 렌즈 기술을 통해 기존의 값비싼 무반사코팅을 대신해 저렴하면서도 효율을 극대화할 수 있을 것”이라고 말했다.
한편, 바이오및뇌공학과 정기훈 교수(제1저자 김재준 박사과정 학생)가 주도한 이번 연구는 미국 국립과학원회보지(PNAS) 10월 29일자 온라인 판에 게재됐다.
그림 1 : (A) 반딧불이 사진. (B) 반디불이의 전자현미경 사진 (N)은 비발광기관, (L)은 발광기관. (C) 비발광기관의 미세패턴, 무작위한 패턴을 형성. (D) 발광기관의 나노구조, 잘 정렬된 나노구조를 형성. (E, F) 반딧불이의 발광기관과 고효율 LED 패키징이 대응되는 구조를 형성하고 있음. 본 연구팀은 반딧불이 발광기관 외피층에 형성된 나노구조층을 LED 렌즈 위에 형성시켜 발광효율을 증가시킴. (E) 반딧불이 발광기관의 모식도. 나노구조의 크기는 약 주기가 250 nm, 너비가 150 nm, 높이가 110 nm 정도임. (F) 고효율 LED 패키징의 모식도.
그림2 : 일반 렌즈(좌)와 고효율 LED 렌즈(우) 사진. 연구팀은 3차원 미세몰딩 기술을 이용해 고효율 LED 렌즈를 제작.
그림 3 : (A) 고효율 LED 렌즈의 제작 과정. (step Ⅰ) 나노입자와 식각공정을 이용하여 나노구조 형성. (step Ⅱ) PDMS 막에 나노구조 전사. (step Ⅲ) PDMS 막에 음압을 가하여 곡률 형성. (step Ⅳ) 자외선 경화 고분자를 부은 후 경화. (step Ⅴ) 완성된 고효율 LED 렌즈. (B) 고효율 LED 렌즈의 전자현미경 사진. (C) 곡면 위에 잘 정렬되어 형성되어 있는 나노구조.
2012.10.30
조회수 16024